张雷职称:教授 办公电话:0755-26939303 EMAIL:lei.zhang@szu.edu.cn |
基本信息
【教育背景】
2004.09——2008.07 厦门大学化学化工学院,化学系本科生毕业,保送硕士研究生
2008.09——2014.12 厦门大学化学化工学院,纳米材料化学博士, 导师:谢兆雄教授
2012.09——2014.09 美国Georgia Institute of Technology,生物医学工程系,国家公派联合培养访问学者,导师:夏幼南教授
【工作背景】
2015.01——2017.01 天津大学化工学院,天津化学化工协同创新中心,优秀博士后,导师:巩金龙教授
2017.01——2021.03 加拿大Western University,Postdoctoral Associate,导师:孙学良教授
2021.06至今 深圳大学,化学与环境工程学院,教授
【近五年主持或参加的科研项目/课题】
1. 国家自然科学基金优秀青年科学基金项目(海外)项目, 2022,项目主持人
2. 国家自然科学基金面上项目, 2021-2024,项目主持人
3. 广东省青年拔尖人才,2022-2025,项目主持人
4. 深圳市稳定支持A类,2022-2024,项目主持人
5. 深圳市孔雀启动经费,2023-2025,项目主持人
6. 国家自然科学基金青年项目, 2017-2019,项目主持人
7. 中国博士后科学基金,特别资助, 2016-2017年,项目主持人
8. 中国博士后科学基金,面上一等资助, 2015-2017 项目主持人
9. 深圳大学青年教师科研启动项目(自然科学),2020-2023,项目主持人
【研究方向】
• 氢燃料电池催化剂
• CO2高效利用
• 原子级纳米材料可控制备
• 同步辐射技术
【奖励与荣誉】
• 国家级“四青”人才
• 广东省青年拔尖人才
• 深圳市海外高层次人才B类
• 深圳大学首位以教授岗位引进的预长聘教师
• 深圳大学新锐研究生导师
• 2016.06 第16届国际催化大会(ICC 16) Young Scientist Prize 青年科学家奖
• 2015.06 优秀博士后奖,首个天津化学化工协同创新中心优秀博士后
研究方向
我们以氢燃料电池Pt基催化材料的原子级精准构筑为研究主线,开展了氢燃料电池低Pt/超低Pt催化剂的研究,取得了一系列具有特色的研究成果:精准调控Pt基纳米催化剂表界面结构,大幅提升了低Pt催化剂的催化效率;精细设计单原子级催化剂配位环境,系统解析了Pt原子级催化剂的选择性催化问题;理性构筑Pt催化剂-载体界面结构,显著提高了低Pt催化剂在燃料电池运行时的电催化性能;从原子尺度上加深了对燃料电池催化剂表面原子排布和催化系统配位环境与催化性能的构效关系理解,为高效燃料电池催化剂的理性设计提供了理论指导和技术支持。
迄今,已发表高水平学术论文78篇,文章总引用6000多次。其中,以第一作者(包括共一)和通讯作者身份在Science(1篇)、Nat. Commun.(1篇)、J. Am. Chem. Soc.(3篇)、 Angew. Chem. Int. Ed.(3篇)、Chem. Soc. Rev.(3篇)、Energy Environ. Sci.(1篇)、Adv. Mater.(2篇)、Adv. Funct. Mater.(1篇)、Adv. Energy Mater.(1篇)、Nano Energy(2篇)、ACS Nano(1篇)、ACS Catal.(1篇)等国际权威学术期刊上发表高质量学术论文38篇,其中10篇ESI高被引论文,文章他引超过5000余次, 单篇最高引用次数超过600次。基于在氢燃料电池Pt基催化材料的原子级精准构筑方面的重要贡献,于2016年获得第16届国际催化大会“青年科学家奖”。
封面文章:
1. 纳米贵金属的原子定向刻蚀与生长
通过精确控制反应热力学与动力学,实现制备催化剂时原子定向刻蚀与生长,开发了包括选择性刻蚀、原子生长与扩散调控、欠电位沉积的构筑方法。通过精细操控生长原子位点,实现了一系列高性能先进催化剂材料的开发和可控制备,相关研究成果引领了纳米贵金属催化剂原子级调控的合成方法,在催化剂表面结构的精确调控以及高活性位点的构筑方面发挥重要作用。
2. 单原子锚定与双原子催化剂的构建
将单个金属原子构筑于特定载体表面,便得到单原子催化剂,其具有100%的原子利用率,活性独特的催化位点,表现出比纳米催化剂更优越的性能。在多种制备单原子催化剂方法中,原子层沉积(ALD)技术能够大规模制备高度均匀分散的单原子,并且所有活性原子均裸露在载体表面,在催化反应中表现优异特性。利用ALD特性,将第二种金属选择性与单原子成键,开发制备异核多原子催化剂的策略。
3. 燃料电池商业应用
参与加拿大巴拉德(Ballard Power Systems,燃料电池工业领导者)燃料电池项目,利用ALD发展的贵金属低负载电极技术,广泛应用于商用电极材料的制备和改性。通过ALD工艺在保持碳涂层厚度不变的前提下,直接沉积纳米材料在碳层表面,将催化剂载量降低至 0.01 mg cm-2(美国能源部制定的阳极Pt载量为低于 0.025 mg cm-2)情况下, 尝试将电池维持优异的活性和稳定性。
代表论著
五篇代表作:
1. Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M.; Liu, J.; Choi, S.-I.; Park, J.; Lu, N.; Herron, J. A.; Xie, Z.; Mavrikakis, M.; Xia, Y. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 2015, 349, 412.
2. Zhang, L.; Si, R.; Liu, H.; Chen, N.; Adair, K.; Wang, Z.; Chen, J.; Song, Z.; Li, J.; Banis, M. N.; Li, R.; Sham, T.-K.; Liu, L.-M.; Botton, G. A.; Sun, X. Atomic Layer Deposited Pt-Ru Dual-Metal Dimers and Identifying the Active Sites of Dimer for High Hydrogen Evolution Reaction. Nature Commun. 2019, 10, 4936.
3. Zhang, L.; Zhang, J.; Kuang, Q.; Xie, S.; Jiang, Z.; Xie, Z.; Zheng, L. Cu2+-assisted synthesis of hexoctahedral Au-Pd alloy nanocrystals with high-index facets. J. Am. Chem. Soc. 2011, 133, 17114-17117.
4. Deng, W.;† Zhang, L.;†(†equal contribution) Li, L.; Chen, S.; Hu, C.; Zhao, Z.-J.; Wang, T.; Gong, J. Crucial Role of Surface Hydroxyls on the Activity and Stability in Electrochemical CO2 Reduction. J. Am. Chem. Soc. 2019, 141, 2911-2915
5. Zhang, L.; Doyle-Davis, K.; Sun, X. Pt-Based Electrocatalysts with High Atom Utilization Efficiency: From Nanostructures to Single Atoms Energy Environ. Sci. 2019, 12, 492-517.
通讯/第一作者(共一)论文:
47. Zhaoyan Luo, Xianliang Li, Yi Guan, Jing Luo, Lei Zhang*, Xiangzhong Ren*, Xueliang Sun*; Building atomic scale and dense Fe-N4 sites of highly efficient Fe-N-C oxygen reduction catalysts using a sacrificial bimetallic pyrolysis strategy, 2022, Submitted
46. Zhongxin Song, Junjie Li, Qianling Zhang, Yongliang Li, Xiangzhong Ren, Lei Zhang* and Xueliang Sun* Progress and perspective of single atom catalysts for membrane electrode assembly of fuel cells, Carbon Energy 2022, in press
45. Zhongxin Song, Xuewan Wang, Dan Wu, Xian-Zhu Fu*, Lei Zhang*, Jing-Li Luo,* Nitrogen-Coordinated Cobalt Single Atoms for Boosting Pt Performance in Proton Exchange Membrane Fuel Cells, 2022, Submitted
44. Zhongxin Song, Qi Wang, Junjie Li, Keegan Adair, Ruying Li, Meng Gu*, Lei Zhang* and Xueliang Sun*; Surpassing the Bifunctional Activity Limit of Pt-Ir Catalysts through Surface Single Atom Engineering, 2022, Submitted
43. Zhaoyan Luo, Xianliang Li, Tingyi Zhou, Yi Guan, Jing Luo, Lei Zhang*, Xueliang Sun*, Chuanxin He, Qianling Zhang, Yongliang Li, Xiangzhong Ren* Breaking the volcano trend via non-bonding single-atom pairs construction towards efficient oxygen reduction, 2022, Submitted
42. Xiaohui Zhong, Shujie Liang, Tingting Yang, Gongchang Zeng,*, Zuqi Zhong, Hong Deng*, Lei Zhang*, and Xueliang Sun*; Sn Dopants with Synergistic Oxygen Vacancy Boost CuO Nanosheets Electroreduction CO2 with Nearly 100% CO Selectivity, ACS Nano, 2022, https://doi.org/10.1021/acsnano.2c08436.
41. Zhongxin Song, Junjie Li, Kieran Doyle Davis, Xifei Li, Jiujun Zhang, Lei Zhang* and Xueliang Sun*; Emerging Applications of Synchrotron Radiation X-Ray Techniques in Single Atomic Catalysts. Small Methods, 2022, doi: 10.1002/smtd.202201078.
40. Zhaoyan Luo, Junjie Li, Yongliang Li, Duojie Wu, Lei Zhang*, Xiangzhong Ren, Chuanxin He, Qianling Zhang, Meng Gu, Xueliang Sun; Band Engineering Induced Conducting 2H-Phase MoS2 by Pd-S-Re Sites Modification for Hydrogen Evolution Reaction. Advanced Energy Materials, 2022 12, 2103823.
39. Feng Liang, Kaiwen Zhang, Lei Zhang*, Yingjie Zhang, Yong Lei, Xueliang Sun; Recent Development of Electrocatalytic CO2 Reduction Application to Energy Conversion. Small 2021, 17, 2100323.
38. Lei Zhang, Qi Wang, Lulu Li, Mohammad Norouzi Banis, Junjie Li, Keegan Adair, Yipeng Sun, Ruying Li, Zhi-Jian Zhao, Meng Gu and Xueliang Sun*. Single Atom Surface Engineering: A New Strategy to Boost Electrochemical Activities of Pt Catalysts. Nano Energy, 2022, 93, 106913
37. Zhao, Y.; † Zhang, L.; † (†equal contribution) Liu, J.; Adair, K.; Zhao, F.; Sun, Y.; Wu, T.; Bi, X.; Amine, K.; Lu, J.; Sun. X. Atomic/Molecular Layer Deposition for Energy Storage and Conversion. Chem. Soc. Rev. 2021, 50, 3889-3956.
36. Zhang, L.; Wang, Q.; Si, R.; Song, Z.; Banis, M. N.; Adair, K.; Li, J.; Doyle-Davis, K.; Li, R.; Liu, L-M.; Gu M.; Sun, X. New Insight of Pyrrole-Like Nitrogen for Boosting Hydrogen Evolution Activity and Stability of Pt Single Atoms. Small 2021, 17, 2004453.
35. Zhang, L.; Si, R.; Liu, H.; Chen, N.; Adair, K.; Wang, Z.; Chen, J.; Song, Z.; Li, J.; Banis, M. N.; Li, R.; Sham, T.-K.; Liu, L.-M.; Botton, G. A.; Sun, X. Atomic Layer Deposited Pt-Ru Dual-Metal Dimers and Identifying the Active Sites of Dimer for High Hydrogen Evolution Reaction. Nature Commun. 2019, 10, 4936.
34. Zhang, L.; Liu, H.; Liu, S.; Banis, M. N.; Song, Z.; Li, J.; Yang, L.; Markiewicz, M.; Zhao, Y.; Li, R.; Zheng, M.; Ye, S.; Zhao, Z.-J.; Botton, G. A.; Sun, X. Pt/Pd Single Atom Alloys as Highly Active Electrochemical Catalysts and the Origin of Excellent Activity. ACS Catalysis, 2019, 9, 9350.
33. Cheng, N.;† Zhang, L.;† (†equal contribution) Sun, X.; Single-Atom Catalysts: from Design to Application. Electrochem. Energ. Rev. 2019, 2, 539-573.
32. Zhang, L.; Zhao, Y.; Banis, M. N.; Adair, K.; Song, Z.; Yang, L.; Markiewicz, M.; Li, J.; Wang, S.; Li, R.; Ye, S.; Sun, X. Rational design of porous structures via molecular layer deposition as an effective stabilizer for enhancing Pt ORR performance. Nano Energy, 2019, 60, 111-118.
31. Zhang, L.; Doyle-Davis, K.; Sun, X. Pt-Based Electrocatalysts with High Atom Utilization Efficiency: From Nanostructures to Single Atoms, Energy Environ. Sci. 2019, 12, 492-517
30. Zhang, L.; Zhao, Z.-J.; Norouzi Banis, M.; Li, L.; Zhao, Y.; Song, Z.; Wang, Z.; Shan, T.-K.; Li, R.; Zheng, M.; Gong, J.; Sun, X. Selective Atomic Layer Deposition of RuOx Catalysts on Shape-Controlled Pd Nanocrystals with Significantly Enhanced Hydrogen Evolution Activity. J. Mater. Chem. A, 2018, 6, 24397-24406
29. Zhang, L.; Banis, M. N.; Sun, X. Single Atom Catalysts by Atomic Layer Deposition Technique. National Science Reviews 2018, 5, 628-630.
28. Zhu, W.;† Zhang, L.;†(†equal contribution) Liu, S.; Li, A.; Yuan, X.; Hu, C.; Zhang, G.; Deng, W.; Zang, K.; Luo, J.; Zhao, Z.-J.; Gong, J. Enhanced CO2 Electroreduction on Neighboring Zn/Co Monomers by Electronic Effect, Angew. Chem. Int. Ed. 2020, 59, 12664-12668.
27. Deng, W.;† Zhang, L.;†(†equal contribution) Li, L.; Chen, S.; Hu, C.; Zhao, Z.-J.; Wang, T.; Gong, J. Crucial Role of Surface Hydroxyls on the Activity and Stability in Electrochemical CO2 Reduction J. Am. Chem. Soc. 2019, 141, 2911-2915
26. Yuan, X.;† Zhang, L.; † (†equal contribution) Li, L.; Dong, H.; Chen, S.; Zhu, W.; Hu, C.; Deng, W.; Zhao, Z.-J.; Gong, J. Ultrathin PdAu Shell with Controllable Alloying Degree on Pd nanocubes towards Carbon Dioxide Electroreduction. J. Am. Chem. Soc., 2019, 141, 4791-4794
25. Dong, H.;† Zhang, L.;†(†equal contribution) Li, L.; Deng, W.; Hu, C.; Zhao, Z.-J.; Gong, J. Abundant Ce3+ Ions in Au-CeOx Nanosheets to Enhance CO2 Electroreduction Performance. Small, 2019, 15, 1900289.
24. Hu, C.;† Zhang, L.;†(†equal contribution) Zhao, Z.-J.; Huang, Z.; Gong, J. Facet-Evolution Growth of Mn3O4@CoxMn3-xO4 Electrocatalysts for Efficient Oxygen Evolution Reaction via Morphological and Electronic Modulation. J. Catal 2019, 369, 105-110.
23. Zhong, D.; Zhang, L.; (†equal contribution) Li, C.; Li, A.; Zhu, W.; Li, D.; Wei, C.; Zhao, Q.; Li, J.; Gong J. Nanostructured NiFe (oxy)hydroxide with easily oxidized Ni towards efficient oxygen evolution reactions. J. Mater. Chem. A, 2018, 6, 16810-16817.
22. Deng, W.;† Zhang, L.;†(†equal contribution) Dong, H.; Chang, X.; Wang, T.; Gong, J. Achieving Convenient Tandem of CO2 Electroreduction and Photo-voltage Using Potential-Independent Disordered Ag Nanoparticles, Chem. Sci. 2018, 9, 6599-6604.
21. Zhu, W.;† Zhang, L.;†(†equal contribution) Yang, P.; Chang, X.; Dong, H.; Li, A.; Hu, C.; Huang, Z.; Zhao, Z.-J.; Gong, J. Low-Coordinated Edge Sites on Ultrathin Palladium Nanosheets Boost CO2 Electroreduction Performance, Angew. Chem. Int. Ed. 2018, 57, 11544-11548.
20. Zhang, L.; Wang, T.; Zhao, Z.-J.; Gong, J. Nano-designed semiconductors for electro- and photoelectro-catalytic conversion of carbon dioxide, Chem. Soc. Rev. 2018, 47, 5423-5443.
19. Dong, H.;† Zhang, L.;†(†equal contribution) Yang, P.; Zhu, W.; Zhao, Z.-J.; Gong, J. Facet Design Promotes Electroreduction of CO2 to CO on Palladium Nanocrystals. Chemical Engineering Science 2018, https://doi.org/10.1016/j.ces.2018.03.029.
18. Hu, C.;† Zhang, L.;†(†equal contribution) Zhao, Z.-J.; Li, A.; Chang, X.; Gong, J. Synergism of Geometric Construction and Electronic Regulation: 3D Se-(NiCo)Sx/(OH)x Nanosheets for Highly Efficient Overall Water Splitting. Adv. Mater. 2018, 30, 1705538. (Cover story)
17. Zhu, W.;† Zhang, L.;†(†equal contribution) Yang, P.; Chang, X.; Dong, H.; Li, A.; Hu, C.; Huang, Z.; Zhao, Z.-J.; Gong, J. Morphological and Compositional Design of Pd–Cu Bimetallic Nanocatalysts with Controllable Product Selectivity toward CO2 Electroreduction. Small 2017, 14, 1703314. (Cover story)
16. Zhang, L.; Zhao, Z.-J.; Gong, J. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and related reaction mechanisms, Angew. Chem. Int. Ed. 2017, 129, 11482-11511. (Cover story)
15. Hu, C.;† Zhang, L.;†(†equal contribution) Zhao, Z.-J.; Huang, Z,; Gong, J. Edge Sites with Unsaturated Coordination in Terraced Cobalt-Manganese Spinel Oxide Catalysts for Electrocatalytic Water Oxidation, Adv. Mater. 2017, 29, 1701820.
14. Yu, S;† Zhang, L.;†(†equal contribution) Dong, H.; Gong, J. Facile synthesis of Pd@Pt octahedra supported on carbon for electrocatalytic applications, AIChE J. 2017, 63, 2528-2534.
13. Zhang, L.; Yu, S.; Zhang, J.; Gong, J. Porous single-crystalline AuPt@Pt bimetallic nanocrystals with high mass electrocatalytic activities, Chem. Sci. 2016, 2016,7, 3500-3505. (Cover story)
12. Yu, S;† Zhang, L.;†(†equal contribution) Zhao, Z.; Gong, J. Structural evolution of concave trimetallic nanocubes with tunable ultra-thin shells for oxygen reduction reaction, Nanoscale 2016, 8, 16640-16649.
11. Zhang, L.; Chen, Q.; Wang, X.; Jiang, Z. Nucleation-mediated synthesis and enhanced catalytic properties of Au-Pd bimetallic tripods and bipyramids with twinned structures and high-energy facets. Nanoscale, 2016, 8, 2819-2825.
10. Zhang, L.; Xie, Z.; Gong, J. Shape-Controlled Synthesis of Au-Pd Bimetallic Nanocrystals for Catalytic Applications. Chem. Soc. Rev. 2016, 45, 3916-3934.
9. Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M.; Liu, J.; Choi, S.-I.; Park, J.; Lu, N.; Herron, J. A.; Xie, Z.; Mavrikakis, M.; Xia, Y. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 2015, 349, 412.
8. Zhang, L.; Chen, Q.; Jiang, Z.; Xie, Z.; Zheng, L. Cu2+ Under-potential-deposition assisted synthesis of Au and Au-Pd alloy nanocrystals with systematic shape evolution. CrystEngComm 2015, 17, 5556-5561.
7. Park, J.;† Zhang, L.;† (†equal contribution) Choi, S.-I.; Roling, L. T.; Lu, N.; Herron, J. A.; Xie, S.; Wang, J.; Kim, M. J.; Mavrikakis, M.; Xia, Y. Atomic layer-by-layer deposition of Platinum on Palladium octahedra for enhanced catalysts toward the oxygen reduction reaction. ACS Nano 2015, 9, 2635-2647.
6. Zhang, L.; Choi, S.-I.; Tao, J.; Peng, H.-C.; Xie, S.; Zhu, Y.; Xie, Z.; Xia, Y. Pd-Cu bimetallic tripods: A mechanistic understanding of the synthesis and their enhanced electrocatalytic activity for formic acid oxidation. Adv. Funct. Mater. 2014, 24, 7520-7529.
5. Zhang, L.; Chen, D.; Jiang, Z.; Zhang, J.; Xie, S.; Kuang, Q.; Xie, Z.; Zheng, L. Facile syntheses and enhanced electrocatalytic activities of Pt nanocrystals with {hkk} high-index surfaces. Nano Res. 2012, 5,181-189.
4. Zhang, L.; Wang, L.; Jiang, Z.; Xie, Z. Synthesis of size-controlled monodisperse Pd nanoparticles via a non-aqueous seed-mediated growth. Nanoscale Res. Lett. 2012, 7, 312.
3. Zhang, L.; Jin, M.; Jiang, Y.; Jiang, Z.; Kuang, Q.; Xie, Z. Progresses on syntheses of the noble-metal nanocrystals with exposed high-index facets. Science China Chemistry 2012, 42, 1513-1524.
2. Zhang, L.; Zhang, J.; Kuang, Q.; Xie, S.; Jiang, Z.; Xie, Z.; Zheng, L. Cu2+-assisted synthesis of hexoctahedral Au-Pd alloy nanocrystals with high-index facets. J. Am. Chem. Soc. 2011, 133, 17114-17117.
1. Zhang, L.; Zhang, J.; Jiang, Z.; Xie, S.; Jin, M.; Han, X.; Kuang, Q.; Xie, Z.; Zheng, L. Facile syntheses and electrocatalytic properties of porous Pd and its alloy nanospheres. J. Mater. Chem. 2011, 21, 9620-9625.
其他作者论文:
50. Jixiao Li, Jianneng Liang*, Zhiheng Ren*, Chuan Shi, Yongliang Li, Lei Zhang, Qianling Zhang, Chuanxin He, Xiangzhong Ren*; Insights of Potassium Hexafluorophosphate Additive in Solid Polymer Electrolyte for Realizing High Performance Allsolid-state Lithium Metal Batteries. Electrochimica Acta, 2022, 429, 141061
49. Wanqing Li, Lei Wu, Xiaochao Wu, Chuan Shi, Yongliang Li*, Lei Zhang, Hongwei Mi, Qianling Zhang, Chuanxin He, Xiangzhong Ren*. Regulation and Mechanism Study of the CoS2/Cu2S-NF Heterojunction as Highly-Efficient Bifunctional Electrocatalyst for Oxygen Reactions. Applied Catalysis B: Environmental, 2022, 303, 120849.
48. Zhaoyan Luo, Lei Zhang, Lei Wu, Lei Wang, Qianling Zhang, Xiangzhong Ren, Xueliang Sun; Atomic-scale insights into the role of non-covalent interactions in electrocatalytic hydrogen evolution reaction. Nano Energy, 2022, 102, 107654
47. Z. Chen, W. Chen, L. Zheng, T. Huang, J. Hu, Y. Lei, Q. Yuan, X. Ren, Y. Li, L. Zhang, S. Huang, S. Ye, Q. Zhang, X. Ouyang, X. Sun, J. Liu. Rational design of Ru species on N-doped graphene promoting water dissociation for boosting hydrogen evolution reaction. Science China Chemistry, 2022, 65, 521-531.
46. Fanpeng Kong, Xiaozhi Liu, Yajie Song, Zhengyi Qian, Junjie Li, Lei Zhang, Geping Yin, Jiajun Wang, Dong Su, Xueliang Sun; Selectively Coupling Ru Single Atoms to PtNi Concavities for High-Performance Methanol Oxidation via d-Band Center Regulation; Angew. Chem. Int. Ed. 2022, https://doi.org/10.1002/anie.202207524
45. Xulei Sui, Lei Zhang, Junjie Li, Kieran Doyle-Davis, Ruying Li, Zhenbo Wang, Xueliang Sun; Advanced Support Materials and Interactions for Atomically Dispersed Noble-Metal Catalysts: From Support Effects to Design Strategies. Advanced Energy Materials, 2022, 12, 2102556
44. Jidong Song, Yan Qi Jin, Lei Zhang, Pengyu Dong, Jiawang Li, Fangyan Xie, Hao Zhang, Jian Chen, Yanshuo Jin, Hui Meng, Xueliang Sun; Phase-Separated Mo–Ni Alloy for Hydrogen Oxidation and Evolution Reactions with High Activity and Enhanced Stability Advanced Energy Materials, 2021, 11, 2003511.
43. Junjie Li, Ya-fei Jiang, Qi Wang, Cong-Qiao Xu, Duojie Wu, Mohammad Norouzi Banis, Keegan R. Adair, Kieran Doyle-Davis, Debora Motta Meira, Y. Zou Finfrock, Weihan Li, Lei Zhang, Tsun-Kong Sham, Ruying Li, Ning Chen, Meng Gu, Jun Li & Xueliang Sun; A general strategy for preparing pyrrolic-N4 type single-atom catalysts via pre-located isolated atoms. Nature Communications, 2021, 12, 6806.
42. Yi Guan, Nan Li, Jiao He, Yongliang Li, Lei Zhang, Qianling Zhang, Xiangzhong Ren,* Chuanxin He, LiRong Zheng and Xueliang Sun; Tuning and understanding the electronic effect of Co–Mo–O sites in bifunctional electrocatalysts for ultralong-lasting rechargeable zinc–air batteries. J. Mater. Chem. A, 2021, 9, 21716-21722
41. Zhao, C.; Sun, Q.; Luo, J.; Liang, J.; Liu, Y.; Zhang, L.; Wang, J.; Deng, S.; Lin, X.; Yang, X.; Huang, H.; Zhao, S.; Zhang, L.; Lu, S.; Sun, X. 3D Porous Garnet/Gel Polymer Hybrid Electrolyte for Safe Solid-State Li-O2 Batteries with Long Lifetimes. Chem. Mater. 2020, 32, 10113-10119.
40. Zhu, Y.; Feng, S.; Zhang, P.; Guo, M.; Wang, Q.; Wu, D.; Zhang, L.; Li, H.; Wang, H.; Chen, L.; Sun, X.; Gu, M. Probing the electrochemical evolutions of Na–CO2 nanobatteries on Pt@NCNT cathodes using in-situ environmental TEM Energy Storage Materials, 2020, 33, 88-94
39. Zhong, D.; Zhao, Z.-J.; Zhao, Q.; Cheng, D.; Liu, B.; Zhang, G.; Deng, W.; Dong, H.; Zhang, L.; Li, J.; Li, J.; Gong, J. Coupling of Cu(100) and (110) Facets Promotes Carbon Dioxide Conversion to Hydrocarbons and Alcohols, Angew. Chem. Int. Ed. 2020, in press, doi: 10.1002/anie.202015159
38. Sui, X.; Zhang, L.; Li, J.; Davis, K.; Li, R.; Sun, X. Enhancing Metal-Support Interaction by in-situ Ion-Exchanging Strategy for High-Performance Pt catalysts in Hydrogen Evolution Reaction. J. Mater. Chem. A, 2020, 8, 16582-16589.
37. Li, J.; Banis, M. N.; Ren, Z.; Adair, K.; Davis, K.; Meira, D.; Finfrock, Y.; Zhang, L.; Kong, F.; Sham, T.K.; Li, R.; Luo, J.; Sun, X. Unveiling the Nature of Pt Single-Atom Catalyst during Electrocatalytic Hydrogen Evolution and Oxygen Reduction Reactions. Small 2021, 17, e2007245.
36. Kong, F.; Ren, Z.; Norouzi Banis, M.; Du, L.; Zhou, X.; Chen, G.; Zhang, L.; Li, J.; Wang, S.; Li, M.; Doyle-Davis, K.; Ma, Y.; Li, R.; Young, A.; Yang, L.; Markiewicz, M.; Tong, Y.; Yin, G.; Du, C.; Luo, J.; Sun, X. Active and Stable Pt–Ni Alloy Octahedra Catalyst for Oxygen Reduction via Near-Surface Atomical Engineering. ACS Catal. 2020, 10, 4205-4214.
35. Li, J.; Zhang, L.; Davis, K.; Li, R.; Sun, X. Recent Advances and Strategies in the Stabilization of Single-Atom Catalysts for Electrochemical Applications. Carbon Energy 2020, 2, 488-520.
34. Hu C.; Li L.; Deng W.; Zhang, G.; Zhu, W.; Yuan, X.; Zhang, L.; Zhao, Z.-J.; Gong, J. Selective Electro-reduction of Carbon Dioxide over SnO2-nanodot Catalysts, ChemSusChem 2020, 13, 6353-6359.
33. Guo, D.; Wang, J.; Zhang, L.; Chen, X.; Wan, Z.; Xi, B. Strategic Atomic Layer Deposition and Electrospinning of Cobalt Sulfide/Nitride Composite as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. Small, 2020, 16, 2002432.
32. Song, Z.; Zhang, L.; Doyle-Davis, K.; Fu, X.; Luo, J.-L.; Sun, X. Recent Advances in MOF-Derived Single Atom Catalysts for Electrochemical Applications. Advanced Energy Materials 2020, 10, 2001561.
31. Song, Z.; Zhu, Y.-N.; Liu, H.; Norouzi Banis, M.; Zhang, L.; Li, J.; Doyle-Davis, K.; Li, R.; Sham, T.-K.; Yang, L.; Young, A.; Botton G. A.; Liu L.-M.; Sun, X. Engineering the Low Coordinated Pt Single Atom to Achieve the Superior Electrocatalytic Performance toward Oxygen Reduction. Small 2020, 16, 2003096
30. Li, L.; Zhao, Z.-J.; Hu, C.; Yang, P.; Yuan, X.; Wang, Y.; Zhang, L.; Moskaleva, L.; Gong, J. Tuning Oxygen Vacancies of Oxides for Promoting Electrocatalytic Reduction of Carbon Dioxide, ACS Energy Lett. 2020, 5, 552-558.
29. Zhong, D.; Zhang, L.; Zhao, Q.; Cheng, D.; Deng, W.; Dong, H.; Yuan, X.; Zhao, Z.; Li, J.; Gong, J. Concentrating and Activating Carbon Dioxide over AuCu Aerogel Grain Boundaries. J. Chem. Phys. 2020, 152, 204703.
28. Kong, F.; Norouzi Banis, M.; Du, L.; Zhang, L.; Zhang, L.; Li, J.; Doyle-Davis, K.; Jianneng Liang, J.; Qingsong Liu, Q.; Xiaofei Yang, X.; Ruying Li, R.; Du, C.; Yin, G.; Sun, X. Highly stable one-dimensional Pt nanowires with modulated structural disorder towards the oxygen reduction reaction. J. Mater. Chem. A, 2019, 7, 24830-24836
27. Hu C.; Zhang L.; Li L.; Zhu W.; Deng W.; Dong H.; Zhao Z. J.; Gong J. Theory assisted design of N-doped tin oxides for enhanced electrochemical CO2 activation and reduction. Sci China Chem, 2019, 62, 1030–1036
26. Hu C.; Zhang L.; Gong J. Recent Progress of Mechanism Comprehension and Design of Electrocatalysts for Alkaline Water Splitting, Energy Environ. Sci., 2019,12, 2620-2645
25. Song, Z.; Banis, M. N.; Liu, H.; Zhang, L.; Zhao, Y.; Li, J.; Doyle-Davis, K.; Li, R.; Knights, S.; Ye, S.; Botton, G. A.; He, P.; Sun X. Ultralow Loading and High-Performing Pt Catalyst for a Polymer Electrolyte Membrane Fuel Cell Anode Achieved by Atomic Layer Deposition. ACS Catalysis 2019, 9, 5365-5374
24. Kong, F.; Liu, S.; Li, J.; Du, L.; Banis, M. N.; Zhang, L.; Chen, G.; Doyle-Davis, K.; Liang, J.; Wang, S.; Zhao, F.; Li, R.; Du, C.; Yin, G.; Zhao, Z.; Sun, X. Trimetallic Pt–Pd–Ni octahedral nanocages with subnanometer thick-wall towards high oxygen reduction reaction. Nano Energy 2019, 64, 103890
23. Wang, Y.; Zhang, L.; Hu. C.; Yu, S. Yang, P.; Cheng, D.; Zhao, Z.; Gong, J. Fabrication of Bilayer Pd-Pt Nanocages with Sub-Nanometer Thin Shells for Enhanced Hydrogen Evolution Reaction. Nano Res. 2019, 12, 2268-2274
22. Zhu, W.; Zhang, L.; Yang, P.; Zhao, Z.-J.; Mu, R.; Hu, C.; Dong, H.; Gong, J. Formation of Enriched Vacancies for Enhanced CO2 Electrocatalytic Reduction over AuCu Alloys. ACS Energy Lett., 2018, 3, 2144-2149.
21. Song Z.; Norouzi Banis, M.; Zhang, L.; Wang, B.; Yang, L.; Banham, D.; Zhao, Y.; Liang, J.; Zheng, M.; Li, R.; Ye, S.; Sun, X. Origin of achieving the enhanced activity and stability of Pt electrocatalysts with strong metal-support interactions via atomic layer deposition. Nano Energy, 2018, 53, 716-725.
20. Zhai, Z.; Chao Li, C.; Zhang, L; Wu, H. C.; Zhang, L.; Tang, N.; Wang, W.; Gong, G. Dimensional construction and morphological tuning of heterogeneous MoS2/NiS electrocatalysts for efficient overall water splitting. J. Mater. Chem. A, 2018, 6, 9833-9838
19. Huang, H.; Ruditskiy, A.; Choi, S.-I.; Zhang, L.; Liu, J.; Ye, Z.; Xia, Y. Rational Design and Successful Execution of a Protocol for the One-Pot Synthesis of Pd Penta-Twinned Nanowires. ACS Appl. Mater. Interfaces 2017, 9, 31203–31212.
18. Li, A.; Chang, X.; Huang, Z.; Li, C.; Wei, Y.; Zhang, L.; Wang, T.; Gong, J. Thin Heterojunctions and Spatially Separated Cocatalysts To Simultaneously Reduce Bulk and Surface Recombination in Photocatalysts. Angew.Chem. Int. Ed. 2016, 55, 13734-13739.
17. Lv, T.; Yang, X.; Zheng, Y.; Huang, H.; Zhang, L.; Tao, J.; Pan, L.; Xia, Y. Controlling the growth of Au on icosahedral seeds of Pd by manipulating the reduction kinetics. J. Phys. Chem. C, 2016, 120, 20768–20774.
16. Huang, Z.; Raciti, D.; Yu, S.; Zhang, L.; Deng, L.; He, J.; Liu, Y.; Khashab, N. M.; Wang, C.; Gong, J.; Nie, Z. Synthesis of platinum nanotubes and nanorings via simultaneous metal alloying and etching. J. Am. Chem. Soc. 2016, 138, 6332-6335.
15. Zhang, P.; Wang, T.; Chang, X.; Zhang, L.; Gong, J. Synergistic cocatalytic effect of carbon nanodots and Co3O4 nanoclusters for the photoelectrochemical water oxidation on hematite. Angew. Chem. Int. Ed. 2016, 55, 5851-5855.
14. Peng, H.-C.; Park, J.; Zhang, L.; Xia, Y. Toward a quantitative understanding of symmetry reduction involved in the seed-mediated growth of Pd nanocrystals. J. Am. Chem. Soc. 2015, 137, 6643-6652.
13. Wang, X.; Choi, S.-I.; Roling, L. T.; Luo, M.; Ma, C.; Zhang, L.; Chi, M.; Liu, J.; Xie, Z.; Herron, J. A.; Mavrikakis, M.; Xia, Y. Palladium-platinum core-shell icosahedra with substantially enhanced activity and durability toward oxygen reduction. Nature Commun. 2015, 6, 7594.
12. Huang, H.; Zhang, L.; Lv, T.; Ruditskiy, A.; Liu, J.; Ye, Z.; Xia, Y. Five-fold twinned Pd nanorods and their use as templates for the synthesis of bimetallic or hollow nanostructures. ChemNanoMat 2015, 1, 246-252.
11. Jia, Y.; Jiang, Y.; Zhang, J.; Zhang, L.; Chen, Q.; Xie, Z.; Zheng, L. Unique excavated rhombic dodecahedral PtCu3 alloy nanocrystals constructed with ultrathin nanosheets of high-energy {110} facets. J. Am. Chem. Soc. 2014, 136, 3748-3751.
10. Xie, S.; Choi, S.-I.; Lu, N.; Roling, L. T.; Herron, J. A.; Zhang, L.; Park, J.; Wang, J.; Kim, M. J.; Xie, Z.; Mavrikakis,; Xia, Y. Atomic layer-by-layer deposition of Pt on Pd nanocubes for catalysts with enhanced activity and durability toward oxygen reduction. Nano Lett. 2014, 14, 3570-3576
9. Wang, X.; Liu, C.; Zheng, B.; Jiang, Y.; Zhang, L.; Xie, Z.; Zheng, L. Controlled synthesis of concave Cu2O microcrystals enclosed by {hhl} high-index facets and enhanced catalytic activity. J. Mater. Chem. A 2013, 1, 282-287.
8. Zhang, J.; Hou, C.; Huang, H.; Zhang, L.; Jiang, Z.; Chen, G.; Jia, Y.; Kuang, Q.; Xie, Z.; Zheng, L. Surfactant-concentration-dependent shape evolution of Au–Pd alloy nanocrystals from rhombic dodecahedron to trisoctahedron and hexoctahedron. Small 2013, 9, 538-544.
7. Jiang, Y.; Jia, Y.; Zhang, J.; Zhang, L.; Huang, H.; Xie, Z.; Zheng, L. Underpotential deposition-induced synthesis of composition-tunable Pt-Cu nanocrystals and their catalytic properties. Chem. Eur. J. 2013, 19, 3119-3124.
6. Zhang, J.; Zhang, L.; Jia, Y.; Chen, G.; Wang, X.; Kuang, Q.; Xie, Z.; Zheng, L. Synthesis of spatially uniform metal alloys nanocrystals via a diffusion controlled growth strategy: the case of Au-Pd alloy trisoctahedral nanocrystals with tunable composition. Nano Res. 2012, 5, 618-629.
5. Zhang, J.; Zhang, L.; Xie, S.; Kuang, Q.; Han, X.; Xie, Z.; Zheng, L. Synthesis of concave palladium nanocubes with high-index surfaces and their high electrocatalytic activities. Chem. Eur. J. 2011, 17, 9915-9919.
4. Xie, S.; Han, X.; Kuang, Q.; Fu, J.; Zhang, L.; Xie, Z.; Zheng, L. Solid state precursor strategy for synthesizing hollow TiO2 boxes with a high percentage of reactive {001} facets exposed. Chem. Commun. 2011, 47, 6722-6724.
3. Zhang, X.-H.; Zeng, D.; Zhang, L.; Zhu, H.; Jin, G.-H.; Xie, Z.; Chen, X.; Kang, J.; Zheng, L. Low cytotoxicity porous Nd2(SiO4)3 nanoparticles with near infrared excitation and emission. Nanotechnology 2011, 22, 185703-185708.
2. Jiang, Q.; Jiang, Z.; Zhang, L.; Lin, H.; Yang, N.; Li, H.; Liu, D.; Xie, Z.; Tian, Z. Synthesis and high electrocatalytic performance of hexagram shaped gold particles having an open surface structure with kinks. Nano Res. 2011, 4, 612-622.
1. Pei, Z.; Lin, L.; Zhang, H.; Zhang, L.; Xie, Z. Self-assembly of 2,6-naphthalenedicarboxylic acid and 4,4’-biphenyldicarboxylic acid on highly oriented pyrolytic graphite and Au(111) surfaces. Electrochimica Acta 2010, 55, 8287-8292.
虚位以待,诚聘英才
一、招聘预长聘教师1名
1. 预长聘教师要求(研究方向:能源催化、燃料电池电堆、储能等)
1)年龄在35周岁以下、获得博士学位不超过3年的人员,特别优秀者可放宽年纪
2)具有强的科研创新能力和团队协作精神。
3)具有良好的学术道德和严谨科学态度、身心健康、能胜任岗位的工作要求。
4)具有较强的英语阅读和写作能力
5)具有较强的能源催化、燃料电池电堆、储能研究背景
6)具有团队管理能力
2、预长聘教师待遇
1)工资薪酬:实行年薪制,根据应聘者的经历及业绩,评为助理教授或副教授,提供具有竞争力的薪酬(38~70万元/年)和科研启动专项经费(10~200万元);特别优秀的应聘者可入选学校“3+1人才工程”项目,并享受15~20万元/年的专门工作报酬,具体按学校相关政策执行。入职后工作突出者可申请“荔园优青”,在原有的工资基础上享受每年15万元岗位津贴。
2)人才政策:具有海外留学经历者可申请深圳大学“鹏城孔雀计划”特聘岗位,享受相应的岗位奖励(15~24万/年),同时符合广东省特支计划人才条件的应聘人员可额外申请广东省50万~200万的补贴。根据深圳市人才计划,深圳大学“鹏城孔雀计划”特聘岗位者可获得300万科研启动费支持。
3)住房政策:可申请租住校内周转房/公租房,租金优惠。符合条件者,可以享受6折购买人才房等深圳市人才房政策,具体以政府最终发布为准。
4)教育配套:深圳大学附属教育集团下辖4所中学、4所小学和3所幼儿园,有效保障教职工子女就学。
5)医疗保健:下设2所三甲综合医院:深圳大学总医院和附属华南医院,为教职工提供优质医疗服务。入职后经过人才等级认证每年可享受一次不同级别的免费体检。
6)员工关怀:学校提供体育专项经费,校内运动设施免费使用;年度健康体检;就餐补贴。
二、招聘专职副研究员
1. 专职副研究员要求(研究方向:能源催化、燃料电池电堆、储能等)
1)年龄在35周岁以下。
2)具有较强的科研创新能力和团队协作精神。
3)具有良好的学术道德和严谨科学态度、身心健康、能胜任岗位的工作要求。
4)具有较强的英语阅读和写作能力。
5)具有能源催化、燃料电池电堆、储能研究背景。
2. 专职副研究员薪酬待遇:
1)专职副研究员具体工资待遇根据学历、研究经历、科研能力等确定,由深圳大学按月发放(29~44万/年),入选“荔薪计划”外加4.8万,此外享受“五险一金”、误餐补助、体检等。符合深圳市人才政策的可申请相关补助补贴。
2)可在聘期内以项目负责人身份申请国家自然科学基金及省、市各级课题。
3)最长可聘5年。
4)符合学校政策要求的专职副研究员可申请转为预聘-长聘制教师,学校已启动“荔园留菁计划”申报,符合条件均可申请转为教职。
三、招聘博士后5名
1. 博士后要求
1)年龄在35周岁以下,具有能源电化学、材料学等学科背景,近三年内已获得或即将获得博士毕业证书和学位证书。
2)具有从事科研工作的兴趣,具备良好的相关工作基础和研究背景。
3)具有良好的团队协作精神和解决问题的能力。
4)具有较强的英语阅读和写作能力,发表过高水平学术论文2篇以上。
5)博士研究期间有相关独立工作经验、有团队合作精神,愿意尝试新研究方向。
2 博士后聘期待遇
深圳大学博士后(普通)综合年薪约33万元,入选“荔薪计划”外加4.8万,即~38万。具体情况包括:
1)省市对符合条件在站博士后发放每人每年18万元生活补助,总额不超36万元。
2)学校提供约15万的综合年薪。
3)深圳市对出站博士后给予30万元资助,用于科研投入或创业前期费用。
4)符合条件的博士后可申请评定专业技术资格。
5)符合学校政策要求的优秀博士后可申请转为预聘-长聘制教师,学校自今年起启动“荔园留菁计划”申报,符合条件均可申请转为教职。
6)博士后在站期间可以负责人身份申请国家自然科学基金、中国博士后科学基金、广东省联合基金等各级科研基金课题。
7)博士后人员进站可自愿选择落户深圳市,享受落户补贴。
五、应聘方式
应聘者将个人简历及反映本人学术水平的近5年代表性成果电子文档发给我。
获奖荣誉
• 国家级“四青”人才
• 广东省青年拔尖人才
• 深圳市海外高层次人才B类
• 深圳大学首位以教授岗位引进的预长聘教师
• 深圳大学新锐研究生导师
• 2016.06 第16届国际催化大会(ICC 16) Young Scientist Prize 青年科学家奖
• 2015.06 优秀博士后奖,首个天津化学化工协同创新中心优秀博士后
地址:深圳市南山区学苑大道1066号深圳大学丽湖校区B1楼414
深圳大学化学与环境工程学院 邮编:518071 电话:0755-26536141
深圳大学化学与环境工程学院是理工类综合学院,成立于2006年8月,其历史可追溯至1985年建立的深圳大学应用化学系和1995年建立的深圳大学师范学院化学与生物学系,现设有化学系、环境工程系、食品科学与工程系以及新能源科学与工程系 点击查看更多>>
微信公众号
深圳大学化学与环境工程学院版权所有,地址:深圳市南山区学苑大道1066号深圳大学丽湖校区B1楼414 邮编:518071 电话:0755-26536141