一、简历
2023-至今,深圳大学,化学与环境工程学院,教授
2017-2022,深圳大学,化学与环境工程学院,副教授
2012-2016,深圳大学,化学与环境工程学院,讲师
2011-2012,香港科技大学,机械工程系,博士后
2007-2011,香港科技大学,机械工程系,博士
2005-2007,华中科技大学,能源与动力工程学院,硕士
2001-2005,华中科技大学,能源与动力工程学院,学士
2012年进入深圳大学从事教学和科研工作,目前为能源科学与工程系主任,深圳市新型锂离子电池重点实验室副主任。长期从事燃料电池、液流电池、锂离子电池等多学科交叉领域的研究。作为项目负责人主持国家自然科学基金2项、广东省自然科学基金2项、深圳市科技计划4项,作为骨干成员先后参与香港研究资助局项目4项、香港创新及科技局项目1项。至今在Energ. Environ. Sci., Small, J. Mater. Chem. A, Renew. Sust. Energ. Rev., J. Power Sources, Appl. Energ., Int. J. Heat Mass Trans. 等权威能源类期刊上发表SCI论文50多篇,论文被SCI期刊他引2000多次,h-index为29。2013年获香港科技大学“博士生卓越研究奖”,2013年香港科学会“青年科学家奖“提名奖(能源工程唯一入选者)。2013年入选深圳市海外高层次(B类)人才,2016年入选深圳大学“荔园优秀青年教师”培养计划。担任国际著名期刊International Journal of Green Energy的客座编辑和Joule,Nano Energ., Adv. Sci., J. Mater. Chem. A, J. Power Sources, Int. J. Heat Mass Trans, J. Electrochem. Soc., Chem. Comm., Carbon, ACS Appl. Mater. Interfaces, Dalton Trans., Energ. & Fuel, Nanoscale, Chem. Eng. J., Chemcatchem, Appl. Energ., Int. J. Hydrogen Energ., Renew Energ., Appl Thermal Eng., J. Micromechan. Microeng., Smart Mater. Struc., Nanotechnology, RSC Adv., Int. J. Energ. Research, J. Energ. Storage, Nanotech. Rev.等30多个国际学术期刊的审稿人。兼任广东省发展与改革委员会战略专家、广东省重点研发项目会评专家、国家自然科学基金函评专家等。
二、人才培养
在读研究生:
2019级:兰泉、黄凯
2020级:杨福林、李旺海、张家乐、谭国来
2021级:熊宁馨、石婷婷、罗文强
已毕业学生:
马雷博士,2017年博士后出站,现工作单位为深圳技术大学,新材料与新能源学院。
梅日国博士,2017年博士后出站,现工作单位为深圳比亚迪股份有限公司。
龚志杰,2016年博士毕业(联合培养),现工作单位为远景能源有限公司。
席晶晶,2017年硕士毕业(联合培养),现工作单位为苏州科技职业学院。
尹春丽,2016年硕士毕业。
黄雨欣,2018年硕士毕业。
秦岩,2018年硕士毕业。
朱晓琳,2018年硕士毕业。
林立宇,2019年硕士毕业,现工作单位为飞亚达精密科技股份有限公司。
刘尧,2020年硕士毕业,现工作单位为奇台中等职业技术学校。
张向阳,2020年硕士毕业,现在香港城市大学深造。
吕云辉,2020年硕士毕业,拟赴香港理工大学深造。
张霈垚,2021年硕士毕业,现工作单位为深圳新宙邦科技股份有限公司。
张学峰,2021年硕士毕业,现工作单位为深圳新宙邦科技股份有限公司。
莫兰兰,2021年硕士毕业,现工作单位为富士康科技集团。
三、基本要求
脚踏实地、对科研感兴趣、有团队协作精神、具有较强的动手能力。
长期招收具有能源、化工、材料、力学、物理、环境等相关背景的研究生、博士后研究人员,欢迎联系咨询(qxwu@szu.edu.cn)。
ORCID:http://orcid.org/0000-0002-0921-8925
GoogleScholar: https://scholar.google.com/citations?user=fRCDkcEAAAAJ&hl=en
[30] Z. Pan, Z. Zhang, W. Li, X. Huo, Y. Liu, O. Esan, Q.X. Wu*, L. An*, “Development of a high-performance ammonium formate fuel cell”, ACS Energy Letters, 2023, in press.
[29] N. Xiong, W. Luo, Q. Lan, Q.X. Wu*, “Slurry Based Lithium-Ion Flow Battery with a Flow Field Design”, Journal of The Electrochemical Society, 170 (2023), 060545.
[28] Y. Lv, Z. Pan, X. Zhou, N. Xiong, F. Wang, Y. Li, Q.X. Wu*, “Flexible Carbon Sponge Electrodes for All Vanadium Redox Flow Batteries”, Chemistry-An Asian Journal, 17 (2022), e202200825.
[27] H.N. Chen,Y. Liu X.F. Zhang, Q. Lan, Y. Chu, Y.L. Li, Q.X. Wu*, "Single-component slurry based lithium-ion flow battery with 3D current collectors", Journal of Power Sources, 485 (2021) 229319.
[26] X. Zhou, X.Y. Zhang, L.L. Mo, X. Zhou, Q.X. Wu*, “Densely Populated Bismuth Nanosphere Semi-Embedded Carbon Felt for Ultrahigh-Rate and Stable Vanadium Redox Flow Batteries”, Small, 16 (2020) 1907333.
[25] X. Zhou, L.Y. Lin, Y.H. Lin, X.Y. Zhang, L.D. Fan, Q.X. Wu*, “Elucidating effects of component materials and flow fields on Sn-Fe hybrid flow battery performance”, Journal of Power Sources, 450 (2020) 227613.
[24] X.Y. Zhang, Y.X. Huang, X. Zhou, F. Wang, Z.K. Luo, Q.X. Wu*, “Characterizations of carbonized electrospun mats as diffusion layers for direct methanol fuel cells”, Journal of Power Sources, 448 (2020) 227410.
[23] X. Zhou, X.Y. Zhang, Y.H. Lv, L.Y. Lin, Q.X. Wu*, “Nano-catalytic layer engraved carbon felt via copper oxide etching for vanadium redox flow batteries”, Carbon, 153 (2019) 674-681.
[22] Q.X. Wu, Y.H. Lv, L.Y. Lin, X.Y. Zhang, Y. Liu, X. Zhou, “An improved thin-film electrode for vanadium redox flow batteries enabled by a dual layered structure”, Journal of Power Sources 410-411 (2019) 152-161.
[21] Q.X. Wu, X.Y. Zhang, Y.H. Lv, L.Y. Lin, Y. Liu, X. Zhou, Journal of Materials Chemistry A 6 (2018) 20347-20355. (2018 Journal of Materials Chemistry A HOT Papers)
[20] X. Zhou, L.Y Lin, Y.H. Lv, X.Y. Zhang, Q.X. Wu*, “A Sn-Fe flow battery with excellent rate and cycle performance”, Journal of Power Sources 404 (2018) 89-95.
[19] Q.X. Wu, Z. Pan, L. An*, “Recent advances in alkali doped polybenzimidazole membranes for fuel cell applications”, Renewable & Sustainable Energy Reviews 89 (2018) 168-183.
[18] Y. Cui, Y. Liu, J.W Wu*, F. Zhang, A.P. Baker, M. Lavorgna*, Q.X. Wu*, Q. Tang, J. Lu, Z. Xiao, X. Liu, “Porous silicon-aluminium oxide particles functionalized with acid moieties: An innovative filler for enhanced Nafion-based membranes of direct methanol fuel cell”, Journal of Power Sources 403 (2018) 118-126.
[17] R.G. Mei, J.J. Xi, Lei. Ma, L. An, F. Wang, H.Y. Sun, Z.K. Luo, Q.X. Wu*, “Multi-scaled porous Fe-N/C nanofibrous catalysts for the cathode electrodes of direct methanol fuel cells”, Journal of The Electrochemical Society 164 (2017) F1556-F1565.
[16] R.G. Mei, L. Ma, L. An, F. Wang, J.J. Xi, H.Y. Sun, Z.K. Luo, Q.X. Wu*, “Layered Spongy-like O-Doped g-C3N4: An Efficient Non-Metal Oxygen Reduction Catalyst for Alkaline Fuel Cells”, Journal of The Electrochemical Society 164 (2017) F354-F363.
[15] J.J. Xi, F. Wang, R.G. Mei, Z.J. Gong, X.P. Fan, H. Yang, L. An, Q.X. Wu*, Z.K. Luo*, "Catalytic performance of pyrolyzed graphene supported Fe-N-C composite and its application for acid direct methanol fuel cells", RSC Advances 6 (2016) 90797-90805.
[14] F. Wang, H.J. Li, Q.X. Wu*, J. Fang, Y. Huang, C.L. Yin, Y.H. Xu, Z.K. Luo, "Improving the performance of a non-aqueous lithium-air battery by defective titanium dioxides with oxygen vacancies", Electrochimica Acta 202 (2016) 1-7.
[13] Z.J. Gong, Q.X. Wu*, F. Wang, X. Li, X.P. Fan, H. Yang, Z.K. Luo*,"A hierarchical micro/mesoporous carbon fiber/sulfur composite for high-performance lithium-sulfur batteries", RSC Advances 6 (2016) 37443-37451.
[12] B. Zhang, H. Xie, J. Ni, X, Xiang, Q.X. Wu*, L. Wang*, "Preparation and properties of branched sulfonated poly(arylene ether ketone) / polytetrafluoroethylene composite materials for proton exchange membranes", RSC Advances 6 (2016) 61410-61417.
[11] Q.X. Wu*, H.Y. Li, W.X. Yuan, Z.K. Luo, F. Wang, H.Y. Sun, X.X. Zhao, H.D. Fu, “Performance evaluation of an air-breathing high-temperature proton exchange membrane fuel cell”, Applied Energy 160 (2015) 146-152.
[10] X.X. Zhao, W.X. Yuan, Q.X. Wu*, H.Y. Sun, Z.K. Luo, H.D. Fu, “High-temperature passive direct methanol fuel cells operating with concentrated fuels”, Journal of Power Sources 273 (2015) 517-521.
[9] Q.X. Wu, L. An, X.H. Yan. T.S. Zhao*, “Effects of design parameters on the performance of passive direct methanol fuel cells fed with concentrated fuel”, Electrochimica Acta 133 (2014) 8-15.
[8] Q.X. Wu, T.S. Zhao*, R. Chen, L. An, “A sandwich structured membrane for direct methanol fuel cells operating with neat methanol”, Applied Energy 106 (2013) 301-306.
[7] Q.X. Wu, S.Y. Shen, Y.L. He, T.S. Zhao*, “Effect of water concentration in the anode catalyst layer on the performance of direct methanol fuel cells operating with neat methanol”, International Journal of Hydrogen Energy 37 (2012) 5958-5968.
[6] Q.X. Wu, T.S. Zhao*, W.W. Yang, “Effect of the cathode gas diffusion layer on the water transport behavior and the performance of passive direct methanol fuel cells operating with neat methanol”, International Journal of Heat and Mass Transfer 54 (2011) 1132-1143.
[5] Q.X. Wu, T.S. Zhao*, “Characteristics of water transport through the membrane in direct methanol fuel cells operating with neat methanol”, International Journal of Hydrogen Energy 36 (2011) 5644-5654.
[4] Q.X. Wu, Y.L. He, T.S. Zhao*, “Recent advances in understanding of mass transfer phenomena in direct methanol fuel cells operating with concentrated fuel”, Frontiers in Heat and Mass Transfer 2 (2011), 032001.
[3] Q.X. Wu, T.S. Zhao*, R. Chen, W.W. Yang, “A microfluidic-structured flow field for passive direct methanol fuel cells operating with highly concentrated fuels”, Journal of Micromechanics & Microengineering 20 (2010) 045014.
[2] Q.X. Wu, T.S. Zhao*, R. Chen, W.W. Yang, “Enhancement of water retention in the membrane electrode assembly for direct methanol fuel cells operating with neat methanol”, International Journal of Hydrogen Energy 35 (2010) 10547-10555.
[1] Q.X. Wu, T.S. Zhao*, R. Chen, W.W. Yang, “Effects of anode microporous layers made of carbon powder and nanotubes on water transport in direct methanol fuel cells“, Journal of Power Sources 191 (2009) 304-311.