师资队伍

代表论著


论著

*Corresponding author. (By OCT. 18th, 2023)

Research ID: H-1418-2011. Total SCI citation times: 4146; H-index: 37

Google Scholar: Citation numbers: 5133. H-index: 41, i10 index: 78,

Scopus ID: 37014518700, Total citation times: 4434, H-index: 38

ORCID0000-0002-5485-9553

*Corresponding author

代表论著

[1] Zhu B.#*, Fan L.#,*, Mushtaq N.#, Raza R.*, Sajid M.c, Wu Y., Lin W, Kim J-S., Lund P.D., Yun S.* Semiconductor Electrochemistry for Clean Energy Conversion and Storage, Electrochemical Energy Reviews, 4 (2021) 757-792, https://doi.org/10.1007/s41918-021-00112-8. IF: 32.8

[2] Lin W., Su W., Li Y., Chiu T.-W.*, Singh M., Pan Z.*, Fan L.* Enhancing electrochemical CO2 reduction on perovskite oxide for solid oxide electrolysis cells through in situ A-site deficiencies and surface carbonate deposition induced by lithium cation doping and exsolution. Small, 2023, 2303305. https://doi.org/10.1002/smll.202303305. IF: 13.3

[3] Li F., Yin Y., Zhang C., Li W., Maliutina K., Zhang Q., Wu Q., He C., Zhang Y., Yang M.*, Fan L.*, Enhancing oxygen reduction performance activity of oxide-CNT through in-situ generated nanoalloy bridging, Applied Catalysis B: Environmental. 263 (2020) 118297. https://doi.org/10.1016/j.apcatb.2019.118297.

[4] Li Y. M. Singh, Jing Y., He C., Fan L.* Efficient reversible CO/CO2 conversion in solid oxide cells with a phase-transformed fuel electrode, Science China Materials, 64 (2021) 1114, https://doi.org/10.1007/s40843-020-1531-7.

[5] Li F., Mushtaq N., Su T., Cui Y., Huang J., Sun M., Singh M., Zhao X., Maliutina K., Zhang Y., He C., Yang M.*, Zhu B., Fan L.*, NCNT grafted perovskite oxide as an active bifunctional hybrid electrocatalyst for zinc-air battery, Materials Today Nano, 21 (2023) 100287 https://doi.org/10.1016/j.mtnano.2022.100287.

[6] Fan L.*, Zhu B.*, Su P.-C.*, He C*. Nanomaterials and technologies for low temperature solid oxide fuel cells: Recent advances, challenges and opportunities. Nano Energy 45 (2018) 148 https://doi.org/10.1016/j.nanoen.2017.12.044. IF15.5, ESI高引(1%)和热点(1‰)论文

[7] Tang C., Zhang H., Xu K., Zhang Q., Liu J., He C., Fan L.*, Asefa T.*, Unconventional molybdenum carbide phases with high electrocatalytic activity for hydrogen evolution reaction, J. Mater. Chem. A, 7 (2019) 18030. http://dx.doi.org/10.1039/C9TA04374H.

[8] Zhu B#.*, Huang Y.#, Fan L.#, Ma Y.#, Wang B., Xia C., Afzal M., Zhang B., Dong W., Wang H.* and Lund P. D*. Novel fuel cell with nanocomposite functional layer designed by perovskite solar cell principle. Nano Energy 19 (2016) 156. https://doi.org/j.nanoen.2015.11.015.

[9] Fan L., Wang C., Zhu B. Low temperature ceramic fuel cells using all nano composite materials. Nano Energy 1 (2012) 631. https://doi.org/10.1016/j.nanoen.2012.04.004.

[10] Zhu, B., Raza, R., Fan, L., Sun, C., Solid Oxide Fuel Cells: From Electrolyte-based to Electrolyte-free Devices, John Wiley & Sons, 2020. Online ISBN: 9783527812790, https://doi.org/10.1002/9783527812790.(第三编辑,完成近5万字撰写)

入职深大后发表论文

[100] Huang J., Su T., Zhao H., Li F.*, Chiu T.-W.*, Singh M., Wu Q., Fan L.*. Nano and phase engineering of Fe-Cu alloy exsolved perovskite oxide-based hetero-catalysts for efficient oxygen evolution reaction, Fuel, 2024, 356, 129479. https://doi.org/10.1016/j.fuel.2023.129479.

[99] Luo S.#, Yang R. #, Meng Y., Maliutina K., Singh M., Chiu T.-W.*, Fan L.*. Promoted electrochemical performance of one-step sintered intermediate temperature solid oxide fuel cells using nanoscale electrodes, Materials Research Bulletin, 168 (2023) 112452, https://doi.org/10.1016/j.materresbull.2023.112452.

[98] Lin W., Su W., Li Y., Chiu T.-W.*, Singh M., Pan Z.*, Fan L.* Enhancing electrochemical CO2 reduction on perovskite oxide for solid oxide electrolysis cells through in situ A-site deficiencies and surface carbonate deposition induced by lithium cation doping and exsolution. Small, 2023, 2303305. https://doi.org/10.1002/smll.202303305.

[97] Zhao H.#, Lin W.#, Yuan K.*, Singh M., Chiu T.-W.*, Fan L.* Demonstration of high-performance and stable metal-supporting semiconductor-ionic fuel cells. J Power Sources 579 (2023) 233325. https://doi.org/10.1016/j.jpowsour.2023.233325.

[96] Hsu B.-Z.#, Yu C.-L. #, Sakthinathan S., Chiu T.-W.*, Yu B.-S., Lin C.-C., Fan L.*, Lee Y.-H. ZnO-ZnFe2O4 Catalyst for Hydrogen Production from Methanol Steam Reforming, Catalysts 13 (2023) 762. https://doi.org/10.3390/catal13040762.

[95] Tong L., Fan L.*, Liang H.*, Platinum Intermetallic Nanoparticle Cathode Catalysts for Proton Exchange-Membrane Fuel Cells: Synthesis and Ordering Effect, Current Opinion in Electrochemistry, 39 (2023) 101281. https://doi.org/10.1016/j.coelec.2023.101281.

[94] Wang Z.#, Meng Y.#, Singh M., Jing Y., Asghar M. I., Lund P., Fan L.* Ni/NiO Exsolved Perovskite La0.2Sr0.7Ti0.9Ni0.1O3δ for Semiconductor-Ionic Fuel Cells: Roles of Electrocatalytic Activity and Physical Junctions ACS Applied Materials & Interfaces, 15 (2023) 870 https://doi.org/10.1021/acsami.2c16002.

[93] Li F., Mushtaq N., Su T., Cui Y., Huang J., Sun M., Singh M., Zhao X., Maliutina K., Zhang Y., He C., Yang M.*, Zhu B., Fan L.*, NCNT grafted perovskite oxide as an active bifunctional hybrid electrocatalyst for zinc-air battery, Materials Today Nano, 21 (2023) 100287 https://doi.org/10.1016/j.mtnano.2022.100287.

[92] Tong L., Yang Q.-Q., Shuai Li, Zhang L.-L., Zeng W.-J., Ding Y.-W., Fan L.*, Liang H.-W*. Building the Bridge of Small Organic Molecules to Porous carbons via Ionic Solid Principle, Nano Research, 16 (2023) 80 https://doi.org/10.1007/s12274-022-4997-8.

[91] Hsu K-C, Yu C-L, Lei H-J, Sakthinathan S*, Chen P-C, Lin C-C, Chiu T-W*, Nagaraj K, Fan L.*, Lee Y-H. Modification of Electrospun CeO2 Nanofibers with CuCrO2 Particles Applied to Hydrogen Harvest from Steam Reforming of Methanol. Materials 15 (2022) 8770. https://doi.org/10.3390/ma15248770

[90] Vasu D, Keyan AK, Sakthinathan S, Yu C-L, You Y-F, Chiu T-W*, Fan L.*, Chen P-C. Visible-Light-Active Vanadium and Copper Co-Doped gCN Nanosheets with Double Direct Z-Scheme Heterojunctions for Photocatalytic Removal of Monocrotophos Pesticide in Water. Catalysts 12 (2022) 1489. https://doi.org/10.3390/catal12111489

[89] Li Y., Li Y., Singh M., Li Z., Hu X., Fan L.*, Effects of ceria on the oxygen reduction activity and thermal cycling stability of BaCo0.4Fe0.4Zr0.1Y0.1O3-δ cathode for solid oxide fuel cells, ACS Applied Energy Materials, 5 (2022) 14391. https://doi.org/10.1021/acsaem.2c02949.

[88] Ganesh K. S., Fan L.*, Wang B.*, Zhu B*. Built-in Electric Field for Efficient Charge Separation and Ionic Transport in LiCoO2/SnO2 Semiconductor Junction Fuel Cells, ACS Appl Energy Mater 5 (2022) 12513, https://doi.org/10.1021/acsaem.2c02152.

[87] Liu J., Zhu D., Zhu C., Jing Y., Jia X., Zhang Y., Yang M., Yu J., Fan L., Imran Asghar M., Lund P. D. A heterostructure p-n junction constituting of fluorite and perovskite semiconductors for electrochemical energy conversion. Energy Convers Manag 269 (2022) 116107. https://doi.org/10.1016/j.enconman.2022.116107.

[86] Xiong D., Rasaki S. A., Li Y., Fan L., Liu C., Chen Z., Enhanced cathodic activity by tantalum inclusion at B-site of La0.6Sr0.4Co0.4Fe0.6O3 based on structural property tailored via camphor-assisted solid-state reaction, Journal of Advanced Ceramics 11 (2022) 1330-1342. https://doi.org/10.1007/s40145-022-0627-x.

[85] Zhuang Z., Li Y., Yu R., Xia L., Yang J., Lang Z., Zhu J., Huang J., Wang J., Wang Y., Fan L., Wu J., Zhao Y., Wang D., Li, Y.. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes, Nature Catalysis 5 (2022) 300-310. https://doi.org/10.1038/s41929-022-00764-9. ESI高引和热点论文

[84] Li Y.*, Li Y., Zhang S., Ren C., Jing Y., Cheng F., Wu Q., Lund P.*, Fan L*. Mutual Conversion of CO-CO2 on a Perovskite Fuel Electrode with Endogenous Alloy Nanoparticles for Reversible Solid Oxide Cells, ACS Applied Materials & Interfaces 14 (2022) 9138, https://doi.org/10.1021/acsami.1c23548.

[83] Maliutina K., Huang J., Su T., Yu J., Fan L.*, Biomass-derived Ta,N,S co-doped CNTs enriched carbon catalyst for efficient electrochemical oxygen reduction, Journal of Alloys and Compounds, 888 (2021) 161479, https://doi.org/10.1016/j.jallcom.2021.161479. (IF: 5.316)

[82] Qu P., Xiong D., Zhu Z., Gong Z., Li Y., Li Y., Fan L., Liu Z., Wang P., Liu C., Chen Z. Inkjet printing additively manufactured multilayer SOFCs using high quality ceramic inks for performance enhancement, Additive Manufacturing 48 (2021) 102394. https://doi.org/10.1016/j.addma.2021.102394.

[81] Zhu B.#*, Fan L.#,*, Mushtaq N.#, Raza R.*, Sajid M.c, Wu Y., Lin W, Kim J-S., Lund P.D., Yun S.* Semiconductor Electrochemistry for Clean Energy Conversion and Storage, Elctrochemical Energy Reviews, 4 (2021) 757-792, https://doi.org/10.1007/s41918-021-00112-8. [80] Yu L., Fan L.*, Electrochemical performance of low temperature solid oxide fuel cells using syngas from pyrolytic urban sludge, Ceramics International, 2021, https://doi.org/10.1016/j.ceramint.2021.02.268.

[79] Maliutina K., He C., Xu K., Yin Y., He C., Fan L.*, Structural and electronic engineering of biomass-derived carbon nanosheets for boosting oxygen reduction reaction, Sustainable Energy & Fuels, 5 (2021) 2114-2126, https://doi.org/10.1039/D0SE01631D.

[78] Hu E.#, Jiang Z. #, Fan L.#*, singh M.#, Wang F., R. Raza*, M. Sajid, J. Wang, J. S. Kim*, and B. Zhu*, Junction and Energy Band on Novel Semiconductor-based Fuel Cells, iScience, 24 (2021)102129, https://doi.org/10.1016/j.isci.2021.102191.

[77] Li Y. M. Singh, Jing Y., He C., Fan L.* Demonstration of reversible CO/CO2 conversion on a phase-transformed fuel electrode in solid oxide cells, Science China Materials, 64 (2021) 1114-1126, https://doi.org/10.1007/s40843-020-1531-7.

[76] Li, W., Yin, Y., Xu, K., Li, F., Maliutina, K., Wu, Q., Li, C., Zhu, B., Fan, L.*, Enhancement of oxygen evolution activity of perovskite (La0.8Sr0.2)0.95MnO3-δ electrode by Co phase surface modification, Catal. Today,364 (2021) 148-156, https://doi.org/10.1016/j.cattod.2020.02.015.

[75] Li Y., Yu L., Yu Y., Maliutina K., Wu Q., He C., Fan L.* Understanding CO2 electrochemical reduction kinetics of mixed-conducting cathodes by the electrical conductivity relaxation method, Int. J. Hydrogen Energy, 46 (2021) 9646, https://doi.org/10.1016/j.ijhydene.2020.07.141.

[74] Jing Y., Zhou X., Lund P., Chen C., Fan L.*, Electrochemical impact of the carbonate in ceria-carbonate composite for low temperature solid oxide fuel cell, Int. J. Hydrogen Energy, 46 (2021) 9898, https://doi.org/10.1016/j.ijhydene.2020.05.065.

[73] Li Y., Li Y., Yu L., Hu Q., Wang Q., Maliutina K., Fan L.* Achieving excellent and durable CO2 electrolysis performance on a dual-phase fuel electrode in solid oxide electrolysis cells, Journal of Power sources, 491 (2021) 229599, https://doi.org/10.1016/j.jpowsour.2021.229599.

[72] Xu K., Bao H., Tang C., Maliutina K., Li F., Fan L.*, Engineering hierarchical MOFs-derived Fe-N-C nanostructure with improved oxygen reduction activity for zinc-air battery: The role of iron oxide, Materials Today Energy, 18 (2020) 100500, https://doi.org/10.1016/j.mtener.2020.100500.

[71] Jing Y., Lund P., Asghard M.I., Zhu B., Wang B., Zhou X., Chen C., Fan L.* Non-doped CeO2-carbonate nanocomposite electrolyte for low temperature solid oxide fuel cells, Ceramics International, 46 (2020) 29290-29296, https://doi.org/10.1016/j.ceramint.2020.08.104.

[70] Zhou, X., Lin, L., Lv, Y., Zhang, X., Fan, L., Wu, Q., Elucidating effects of component materials and flow fields on Sn–Fe hybrid flow battery performance, J. Power Sources 450 (2020) 227613. https://doi.org/10.1016/j.jpowsour.2019.227613.

[69] Yu, Y., Yu, L., Shao, K., Li, Y., Maliutina, K., Yuan, W., Wu, Q., Fan, L.*, BaZr0.1Co0.4Fe0.4Y0.1O3-SDC composite as quasi-symmetrical electrode for proton conducting solid oxide fuel cells, Ceram. Int. 46 (2020) 11811 https://doi.org/10.1016/j.ceramint.2020.01.215.

[68] Cao, Z., Wang, Z., Li, F., Maliutina, K., Wu, Q., He, C., Lv, Z.*, Fan, L.*, Insight into high electrochemical activity of reduced La0.3Sr0.7Fe0.7Ti0.3O3 electrode for high temperature CO2 electrolysis, Electrochim. Acta 332 (2020) 135464. https://doi.org/10.1016/j.electacta.2019.135464.

[67] Li F., Yin Y., Zhang C., Li W., Maliutina K., Zhang Q., Wu Q., He C., Zhang Y., Yang M.*, Fan L.*, Enhancing oxygen reduction performance activity of oxide-CNT through in-situ generated nanoalloy bridging, Applied Catalysis B: Environmental. 263 (2020) 118297. https://doi.org/10.1016/j.apcatb.2019.118297.

[66] Tang C., Zhang H., Xu K., Zhang Q., Liu J., He C., Fan L.*, Asefa T.*, Unconventional molybdenum carbide phases with high electrocatalytic activity for hydrogen evolution reaction, J. Mater. Chem. A, 7 (2019) 18030 . https://doi.org/10.1039/c9ta04374h.

[65] Shao K., Li F., Zhang G., Zhang Q., Maliutina K., Fan L.*, Approaching Durable Single-Layer Fuel Cells: Promotion of Electroactivity and Charge Separation via Nanoalloy Redox Exsolution, ACS Appl. Mater. Interfaces, 11 (2019) 27924. https://doi.org/10.1021/acsami.9b08448.

[64] Z. Cao, L. Fan*, C. He, G. Zhang, K. Shao, Z. Lv, B. Zhu*. Titanium-substituted ferrite perovskite: An excellent sulfur and coking tolerant anode catalyst for SOFCs. Catalysis Today, 330 (2019) 217. https://doi.org/10.1016/j.cattod.2018.04.023.

[63] Hu Q., Li G., Liu X., Zhu B., Li G., Fan L., Chai X., Zhang Q., Liu J., He C., Coupling pentlandite nanoparticles and dual-doped carbon networks to yield efficient and stable electrocatalysts for acid water oxidation, J. Mater. Chem. A, 7 (2019) 461. https://doi.org/10.1039/c8ta09534e.

[62] Liu, X., Hu, Q., Zhu, B., Li, G., Fan, L., Chai, X., Zhang, Q., Liu, J., He, C., Boosting Electrochemical Hydrogen Evolution of Porous Metal Phosphides Nanosheets by Coating Defective TiO2 Overlayers, Small 14 (2018) e1802755. https://doi.org/10.1002/smll.201802755.

[61] Zhu, B., Hu, Q., Liu, X., Li, G., Fan, L., Zhang, Q., Liu, J., He, C., Boosting the electrochemical water oxidation reaction of hierarchical nanoarrays through NiFe-oxides/Ag heterointerfaces, Chem. Commun. 54 (2018) 10187. https://doi.org/10.1039/C8CC06270F.

[60] Yang H., Wu Y., Lin Q., Fan L., Chai X., Zhang Q., Liu J., He C., Lin Z. Composition Tailoring via N & S Co-doping and Structure Tuning by Constructing Hierarchical Pores Enable Metal-free Catalysts for High-Performance Electrochemical Reduction of CO2, Angewandte Chemie, 130 (2018) 15702, https://doi.org/10.1002/ange.201809255.

[59] Yang H., Zhang H., Wu Y., Fan L., Chai X., Zhang Q., Liu J., He C. Core-shell structured silver nanowires/nitrogen-doped carbon catalyst for enhanced and multifunctional electro-fixation of CO2. ChemSusChem 11 (2018) 3905, https://doi.org/10.1002/cssc.201801612.

[58] Fan L.#*, Zhu B.*, Su P.-C.*, He C*. Nanomaterials and technologies for low temperature solid oxide fuel cells: Recent advances, challenges and opportunities. Nano Energy 45 (2018) 148, https://doi.org/10.1016/j.nanoen.2017.12.044.

[57] G. Zhang, W. Li, W. Huang, Z. Cao, K. Shao, F. Li, C. Tang, C. He*, L. Fan*. Strongly coupled Sm0.2Ce0.8O2-Na2CO3 nanocomposite for low temperature solid oxide fuel cells: One-step synthesis and super interfacial proton conductivity. J. Power Sources, 386 (2018) 56, https://doi.org/10.1016/j.jpowsour.2018.03.035.

[56] Y. Liu, H.-P. Zhang, B. Zhu, H. Zhang, L. Fan, X. Chai, Q. Zhang, J. Liu, C. He*. C/N-co-doped Pd coated Ag nanowires as a high-performance electrocatalyst for hydrogen evolution reaction. Electrochim Acta 283 (2018) 221 https://doi.org/10.1016/j.electacta.2018.06.137.

[55] Q. Hu, X. Liu, B. Zhu, G. Li, L. Fan, X. Chai, Q. Zhang, J. Liu, C. He*. Redox route to ultrathin metal sulfides nanosheet arrays-anchored MnO2 nanoparticles as self-supported electrocatalysts for efficient water splitting. J Power Sources 398 (2018) 159 https://doi.org/10.1016/j.jpowsour.2018.07.068.

[54] Q. Hu, X. Liu, B. Zhu, L. Fan, X. Chai, Q. Zhang, J. Liu, C. He*, Z. Lin*. Crafting MoC2-doped bimetallic alloy nanoparticles encapsulated within N-doped graphene as roust bifunctional electrocatalysts for overall water splitting. Nano Energy 50 (2018) 212 https://doi.org/10.1016/j.nanoen.2018.05.033.

[53] H. Yang, Q. Lin, H. Zhang, Y. Wu, L. Fan, X Chai, Q. Zhang, J. Liu, C. He* Selective electrochemical reduction of CO2 by a binder-free platinum/nitrogen-doped carbon nanofiber/copper foil catalyst with remarkable efficiency and reusability. Electrochem Commun 93 (2018) 138 https://doi.org/10.1016/j.elecom.2018.06.018.

[52] C. Tang, Q. Hu, F. Li, C. He*, X. Chai, C. Zhu, J. Liu, Q. Zhang, B. Zhu, L. Fan*. Coupled molybdenum carbide and nitride on carbon nanosheets: An efficient and durable hydrogen evolution electrocatalyst in both acid and alkaline Media. Electrochimica Acta, 2018, 280 (2018) 323, https://doi.org/10.1016/j.electacta.2018.05.129.

[51] T-H Lee, L. Fan, Yu C., F-E Wiria, P-C. Su*. High-Performance SDC-Infiltrated Nanoporous Silver Cathode with Superior Thermal Stability for Low Temperature Solid Oxide Fuel Cells. J. Mater. Chem. A, 6 (2018) 7357, https://doi.org/10.1039/c8ta01104d.

[50] C. Tang, H. Zhang, K. Xu, Q. Hu, F. Li, C. He*, Q. Zhang, J. Liu, L. Fan*. Scalable synthesis of heterostructure molybdenum and nickel sulfides nanosheets for efficient hydrogen generation in alkaline electrolyte. Catalysis Today, 316 (2018) 171. https://doi.org/10.1016/j.cattod.2018.03.010.

[49] F. Li, Y. Yin, W. Li, C. He*, J. Liu, L. Fan*. Readily fabricated NiCo alloy-metal oxide-carbon black hybrid catalysts for the oxygen reduction reactions in the alkaline media. Int. J. Hydrogen Energy, 43 (2018) 12637. https://doi.org/10.1016/j.ijhydene.2018.04.096.

[48] Hu Q., Liu X., Tang C., Fan L., Chai X., Zhang Q., Liu J., He C*. High efficiency oxygen evolution reaction enabled by 3D network composed of nitrogen-doped graphitic carbon-coated metal/metal oxide heterojunctions. Electrochim Acta 265 (2018) 620 https://doi.org/10.1016/j.electacta.2018.01.209.

[47] Yang H., Lin Q., Zhang H., Li G, Fan L, Chai X, Zhang Q, Liu J., He C*. Platinum/nitrogen-doped carbon/carbon cloth: a bifunctional catalyst for the electrochemical reduction and carboxylation of CO2 with excellent efficiency. Chem Commun, 54 (2018) 4108, https://doi.org/10.1039/c8cc00969d.

[46] Hu Q., Liu X., Tang C., Fan L., Chai X., Zhang Q., Liu J., He C. Facile fabrication of 3D network composed of N-doped carbon-coated core-shell metal oxides/phosphides for highly efficient water splitting. Sustainable Energy & Fuels, 2 (2018) 1085, https://doi.org/10.1039/c7se00576h.

[45] T-H Lee, J-D Baek, L. Fan, F-E Wiria, P-C. Su*, S-H Lee*. SDC-Infiltrated Microporous Silver Membrane with Superior Resistance to Thermal Agglomeration for Cathode-Supported Solid Oxide Fuel Cells. Energies, 11 (2018) 2181, IF: 2.676, https://doi.org/10.3390/en11092181.

[44] Liu Y.#, Fan L.#, Cai Y., Zhang W., Wang B., Zhu B. Superionic Conductivity of Sm3+, Pr3+, and Nd3+ Triple-Doped Ceria through Bulk and Surface Two-Step Doping Approach. ACS Appl. Mater. Interfaces 9 (2017) 23614. https://doi.org/10.1021/acsami.7b02224.

[43] Lund P., Zhu B., Li Y., Yun S., Nasibulin A., Raza R., Leskelä M., Ni M., Wu Y., Chen G., Fan L., Kim J., Basu S., Kallio T., Pamuk I. Standardized Procedures Important for Improving Single-Component Ceramic Fuel Cell Technology. ACS Energy Letters 2 (2017) 2752 https://doi.org/10.1021/acsenergylett.7b00997.

[42] Fan L., Chen M., Zhang H., Wang C., He C. Pr2NiO4-Ag composite as cathode for low temperature solid oxide fuel cells: Effects of silver loading methods and amounts. Int J Hydrogen Energy 42 (2017) 17544. https://doi.org/10.1016/j.ijhydene.2017.05.053.

[41] Mi Y., Zhang W., Deng H., Wang X., Fan L.*, Zhu B*. Rare-earth oxide-Li0.3Ni0.9Cu0.07Sr0.03O2-δ composites for advanced fuel cells. Int J Hydrogen Energy, 42 (2017) 22214. https://doi.org/10.1016/j.ijhydene.2017.03.025.

[40] Xie H., Biswas M., Fan L., Li Y., Su P.-C*. Rapid thermal processing of chemical-solution-deposited yttrium-doped barium zirconate thin films. Surface and Coatings Technology 320 (2017)213. https://doi.org/10.1016/j.surfcoat.2017.01.045.

[39] Fan L., He C., Zhu B. Role of carbonate phase in ceria–carbonate composite for low temperature solid oxide fuel cells: A review. Int J Energy Res 41 (2017) 465, https://doi.org/10.1002/er.3629.

[38] Wang B., Wang Y., Fan L., Cai Y., Xia C., Liu Y., et al. Preparation and characterization of Sm and Ca co-doped ceria–La0.6Sr0.4Co0.2Fe0.8O3δ semiconductor–ionic composites for electrolyte-layer-free fuel cells. J. Mater. Chem. A, 4 (2016) 15426, https://doi.org/10.1039/c6ta05763b.

[37] Fan L. and Su P. Layer-structured LiNi0.8Co0.2O2: A new triple (H+/O2/e) conducting cathode for low temperature proton conducting solid oxide fuel cells. J Power Sources 306 (2016) 369. https://doi.org/10.1016/j.jpowsour.2015.12.015.

[36] He C.*, Xie M., Hong F., Chai X., Mi H., Zhou X., Fan L.*, Zhang Q., Ngai T., Liu J. Highly Sensitive Glucose Biosensor Based on Gold Nanoparticles/Bovine Serum Albumin/Fe3O4 Biocomposite Nanoparticles. Electrochim Acta 222 (2016) 1709, https://doi.org/10.1016/j.electacta.2016.11.162.

[35] Zhu B., Fan L.*, Deng H., He Y., Afzal M., Dong W., Yaqub A. and Janjua N. LiNiFe-based layered structure oxide and composite for advanced single layer fuel cells. J Power Sources 316 (2016) 37. http://dx.doi.org/10.1016/j.jpowsour.2016.03.056.

[34] Zhu B#., Huang Y. #, Fan L. #, Ma Y. #, Wang B., Xia C., Afzal M., Zhang B., Dong W., Wang H. and Lund P. D. Novel fuel cell with nanocomposite functional layer designed by perovskite solar cell principle. Nano Energy 19 (2016) 156. https://doi.org/j.nanoen.2015.11.015.

[33] He Y., Fan L., Afzal M., Singh M., Zhang W., Zhao Y., Li J., Zhu B. Cobalt oxides coated commercial Ba0.5Sr0.5Co0.8Fe0.2O3-δ as high performance cathode for low-temperature SOFCs. Electrochim. Acta 191 (2016) 223. https://doi.org/10.1016/j.electacta.2016.01.090.

[32] Fan L., Xie H., Su P. Spray Coating of Dense Proton-conducting BaCe0.7Zr0.1Y0.2O3 Electrolyte for Low Temperature Solid Oxide Fuel Cells. Int J Hydrogen Energy, 41 (2016) 6516. http://dx.doi.org/10.1016/j.ijhydene.2016.03.001.

[31] Yu C.-C., Baek J. D., Su C.-H., Fan L., Wei J., Liao Y.-C., Su P. Inkjet-printed Porous Silver Thin Film as a Cathode for Low-Temperature Solid Oxide Fuel Cell. ACS Appl Mater Interfaces 8 (2016) 10343. https://doi.org/10.1021/acsami.6b01943.

[30] Zhu B., Lund P. D., Raza R., Ma Y., Fan L., Afzal M., Patakangas J., He Y., Zhao Y., Tan W., Huang Q.-A., Zhang J., Wang H. Schottky Junction Effect on High Performance Fuel Cells Based on Nanocomposite Materials. Adv. Energy Mater., 5 (2015) 1401895. https://doi.org/10.1002/aenm.201401895.

书本与章节

1. Zhu, B., Raza, R., Fan, L., Sun, C., Solid Oxide Fuel Cells: From Electrolyte-based to Electrolyte-free Devices, John Wiley & Sons, 2020. Online ISBN: 9783527812790, Print ISBN: 9783527344116, https://doi.org/10.1002/9783527812790

2. Fan, L.*, Chapter 2: Solid-State Electrolytes for SOFC, in: B. Zhu, R. Raza, L. Fan, C. Sun (Eds.) Solid Oxide Fuel Cells: From Electrolyte-Based to Electrolyte-Free Devices, John Wiley & Sons, 2020, pp. 35. https://doi.org/10.1002/9783527812790.ch2

3. Zhu, B.*, Fan, L.*, Kim, J.-S., Lund, P.D., Chapter 6: Electrolyte-Free SOFCs: Materials, Technologies, and Working Principles, in: B. Zhu, R. Raza, L. Fan, C. Sun (Eds.) Solid Oxide Fuel Cells: From Electrolyte-Based to Electrolyte-Free Devices, John Wiley & Sons, 2020. https://doi.org/10.1002/9783527812790.ch6

4. Wang, B., Fan, L.*, Liu, Y., Zhu, B.*, Chapter 7: Ceria Fluorite Electrolytes from Ionic to Mixed Electronic and Ionic Membranes, in: B. Zhu, R. Raza, L. Fan, C. Sun (Eds.) Solid Oxide Fuel Cells: From Electrolyte-Based to Electrolyte-Free Devices, John Wiley & Sons, 2020, pp. 213. https://doi.org/10.1002/9783527812790.ch7

5. Wu, Y.#, Fan, L.#, Mushtaq, N., Zhu, B., Afzal, M., Sajid, M., Raza, R., Kim, J.-S., Lin, W.-F., Lund, P.D., Chapter 11: Electrolyte-Free Fuel Cell: Principles and Crosslink Research, in: B. Zhu, R. Raza, L. Fan, C. Sun (Eds.) Solid Oxide Fuel Cells: From Electrolyte-Based to Electrolyte-Free Devices, John Wiley & Sons, 2020. https://doi.org/10.1002/9783527812790.ch11

6. Fan L., Afzal M. He C., Zhu B., Chapter 12 : “Nanocomposites for ‘‘Nano Green Energy’’ applications” in “Bioenergy systems for the future”, Edited by: F. Dalena, A. Basile and C. Rossi, Elsevier, 2017, 421-429, ISBN: 978-0-08-101031-0, DOI: https://doi.org/10.1016/B978-0-08-101031-0.00012-0.


专利

已授权:

[1] 范梁栋,张卉,复合材料及其制备方法、电催化水解制氢的方法,中国发明专利,深圳大学,专利号:202010595727.4,申请日:2020.06.28,授权日:2023.2.17

[2] 范梁栋,俞莉翔,景义甫,一种CO2转化电解池及其制备方法与应用,中国发明专利,深圳大学,专利号:ZL202110674479.7,申请日2021.06.17,授权日:2022.2.23

[3] 范梁栋,张卉,唐超云,碳化钼材料、碳化钼@硫化钼复合材料及制备方法与应用,中国发明专利,深圳大学,专利号:ZL2018107854129,申请日2018.07.17,授权日:2021.08.03

[4] 范梁栋,徐括峰,一种含锌单原子催化剂及其制备方法与应用,中国发明专利,深圳大学,专利号:ZL 2020 1 0475821.6申请日:2020.05.29,授权日:2021.05.11

[5] 范梁栋陶瓷燃料电池及其制备方法,中国发明专利,深圳大学,授权专利号:ZL 201711078240.3,申请日:2017.11.06,授权日:2020.05.22

[6] 朱斌,宓丹,范梁栋, 何运娟,用锰酸锂与稀土氧化物复合材料制造低温固体氧化物燃料电池, 中国专利, 专利号:ZL 2013107474752

[7] 尹双凤,罗胜联,范梁栋,代威力,张晓文,一种催化氧化苯乙烯制备苯甲醛的方法,中国专利,专利号:ZL 200810031739.3

[8] 范梁栋,胡启铖,包华源,电极材料的制备方法、电极和超级电容器,中国发明专利,深圳大学,申请号:202011091451.2,申请日:2021.11.09 (一审完成)

[9] 范梁栋,林万斌,杨睿,钙钛矿阴极材料、固体氧化物电解池及其制备方法与应用,中国发明专利,深圳大学,申请号:2023106455705,申请日:2023.06.01(实审开始)


会议

1. 范梁栋,邀请报告,金属支撑半导体基燃料电池的构筑及其质子导电特性研究,第四届国际电化学能源系统学术会议,中国南昌,2023.10.21-25

2. 范梁栋,邀请报告/分会主持人/组织委员,金属支撑半导体离子燃料电池及其质子导电行为研究,第二届中国质子导电陶瓷与氢能技术学术会议,江苏盐城,2023.09.08-10

3. 范梁栋,分会邀请报告,固体氧化物电解池含碱金属钙钛矿阴极的原位重构和电解CO2性能研究,中国材料大会,中国深圳,2023.07.07-10

4. 范梁栋,口头报告,复合离子导电高温CO2电解池研究,21届全国固态离子学会议2023.03.30-04.03,江苏南京

5. 范梁栋,口头报告:碱金属掺杂提升钙钛矿氧化物阴极电解CO2 性能研究The 8th Yangzi River Delta International Conference on New Energy The 4th International Forum on New Fuel Cells2022.12.18 江苏南京线上

6. 范梁栋,特邀报告: Design and electrochemical performance investigation of active CO2 cathodic catalyst for solid oxide electrolysis cells第三届国际电化学能源系统大会2022.07.27-07.30,银川宁夏

7. 范梁栋,口头报告钙钛矿氧化物表面功能化及其电化学应用研究, The 7th Yangzi River Delta International Conference on New Energy/The 3rd International Forum on new fuel cells2021.11.19-21,线上

8. Liangdong Fan, Zenghui Wang, 口头报告High-performance in-situ Ni nanoparticle exsolved LSTN/LNSDC composites for low temperature solid oxide fuel cells, 7th International Symposium on Advanced Ceramics and Technology for Sustainable Energy Applications toward a Low Carbon Society (ACTSEA2021), Virtual conference National Taipei University of Technology, Taipei, TaiwanNOV. 15-17, 2021. 线上

9. 范梁栋分会邀请报告:基于混合离子导电电解质的CO2高温陶瓷电解池研究,第六届全国固态离子学青年术交流会暨2021年中国硅酸盐学会固态离子分理理事会2021.09.27-29, 湖南韶山市

10. Liangdong Fan, Active heterostructure materials for High temperature CO2 ceramic electrolyzer: Structural design and electrochemical performance,碳一分子催化化学国际学术研讨会, July 23-25, 2021,细胞出版社,中国科学院大连化学物理研究所

11. 范梁栋邀请报告:高温CO2陶瓷电解池:异质材料设计与电化学性能研究,2021SOFC青年研讨会2021.05.14-17,中国济南大学

12. 范梁栋,大会报告:固体氧化物CO2 电解池新型钙钛矿氧化物基阴极材料研究,2021第四届全国氧化物材料、器件及发展趋势研讨会2021.04.16-18,深圳,中国高新材料工业技术科技交流中心

13. 范梁栋,口头报告:氧化铈-碳酸盐复合陶瓷的合成和CO2 电解性能研究,先进陶瓷高峰论坛2021.04.23-25,中国长沙

14. 范梁栋,大会邀请报告:钙钛矿表面纳米金属偏析有效提升电化学能量转换,第六届长三角国际新能源会议 2020.12.05-07,中国南京

15. 范梁栋,景义甫,俞莉翔,分会邀请报告:氧化铈-碳酸盐复合物:多离子导电特性与功能应用,2020全国固态离子学会议(SSIC2020)暨新型能量储存与转换材料及技术国际论坛20200925-29日,中国贵阳,分会场主持人

16. 范梁栋口头报告:钼基析氢催化剂的设计合成和电化学性能研究第二十次全国电化学大会20191025-28日,中国长沙,口头报告

17. Fan L, Shao K.大会邀请报告Boosting performance and durability of single-layer fuel cell with nanoalloy exsolved perovskite oxide semiconductors, Nanosmat Asia 2019, Oct. 11-13rd2019,中国西安

18. 范梁栋, 张广洪,邀请报告:低温固态氧化物燃料电池纳米复合电解:一步合成与界面超质子电导性能研究,Solid state ionics 2018August 5-9st, 2018, 上海同济大学

19. Fan L., 邀请报告/分会主持人:Functional materials for non-classic ceramic fuel cells, International Conference on Solid state ionics, Pyengchang, Jun. 15-22nd, 2019,分会场主持人

20. 范梁栋邀请报告Boosting performance and durability of single-layer fuel cell with nanoalloy exsolved perovskite oxide semiconductors2019宁波新能源技术国际研讨会2019111-3,中国宁波

21. Fan L. Design of active and durable oxide-metal-NCNT oxygen electrocatalysts for Zinc-Air battery, 2019 International Conference on Electrochemical Energy System (2019 ICEES,电化学系统大会)2019326-29日,中国绍兴,口头报告

22. 范梁栋、李凤姣、印钰,邀请报告:与贵金属催化活性媲美的钙钛矿氧化物-金属-碳纳米管双功能氧电催化剂的理性设计、合成与表征,中国新能源材料与器件第二届学术会议 2018.10.19-21,湖南长沙,(证书)

23. Fan L., Zhang G., High ionic conducting composite membrane for low temperature solid oxide fuel cells, The 9th International Conference on Technological Advances of Thin Films & Surface Coatings (Thim film 2018), 17 – 20 July 2018, Shenzhen, China, Oral presentation

24. Z. Cao, K. Shao, G. Zhang, L. Fan*, Post Presentation: Faraday efficiency study of the Fe based perovskite oxide for CO2 electrolysis, China-EU Fuel cell and hydrogen forum, Dec. 11-13rd, 2017, Wuhan.

25. G. Zhang, Z. Cao, K. Shao, L. Fan*, Post Presentation: Strongly coupled SDC-Na2CO3 nanocomposite: One step synthesis and super proton conductivity. China-EU Fuel cell and hydrogen forum, Dec. 11-13rd, 2017, Wuhan

26. Fan L.*, G. Zhang, Z. Cao, K. Shao, Oral Presentation: Recycling of symmetrical solid oxide fuel cell for single component fuel cell application, China-EU Fuel cell and hydrogen forum, Dec. 11-13rd, 2017, Wuhan

27. Fan L. Zhang G. Oral presentation: Sm0.2Ce0.8O2-Na2CO3 nanocomposite: one step synthesis and electrochemical performances for low temperature ceramic fuel cells, NANOENERGY 2017 (4th International Conference on Nanotechnology, Nanomaterials & Thin Films for Energy Applications), 26-28 July 2017, Aalto University, Helsinki, Finland.

28. Fan L., Post Presentation, Electro-catalytic activity of lithiated transition metal oxide catalysts for low temperature solid oxide fuel cells, 2nd International Symposium on Catalytic Science and Technology in Sustainable Energy Environment, Oct 11-14, 2016, Tianjin, China.

29. Fan L., Su P, Oral presentation: Spray Coating of Dense Proton-conducting BZCY Electrolyte Thin Film for LTSOFCs, The 8th International Conference on Technological Advances of Thin Films & Surface Coatings (ThinFilms 2016), 12-15th, July, 2016, Singapore (Session Chair).











联系我们

地址:深圳市南山区学苑大道1066号深圳大学丽湖校区B1楼414

深圳大学化学与环境工程学院  邮编:518071 电话:0755-26536141



关于我们

深圳大学化学与环境工程学院是理工类综合学院,成立于2006年8月,其历史可追溯至1985年建立的深圳大学应用化学系和1995年建立的深圳大学师范学院化学与生物学系,现设有化学系、环境工程系、食品科学与工程系以及新能源科学与工程系  点击查看更多>>

快速通道

微信公众号