师资队伍

代表论著

Google Scholar (by April 1st, 2021): Citation numbers: 3039 times. https://scholar.google.com.hk/citations?user=gNCVO04AAAAJ&hl=zh-CN, H-index: 30, i10 index: 52

Research ID:www.researcherid.com/rid/H-1418-2011.  Total SCI citation times:2247, H-index: 28 (By Web of Science) 

*Corresponding author

Selected publications

[1] Fan L.*, Zhu B.*, Su P.-C.*, He C*. Nanomaterials and technologies for low temperature solid oxide fuel cells: Recent advances, challenges and opportunities. Nano Energy 45 (2018) 148, (中科院大类一区SCIIF15.548, ESI高引(1%)和热点(1‰)论文, https://doi.org/10.1016/j.nanoen.2017.12.044.

[2] Li F., Yin Y., Zhang C., Li W., Maliutina K., Zhang Q., Wu Q., He C., Zhang Y., Yang M.*, Fan L.*, Enhancing oxygen reduction performance activity of oxide-CNT through in-situ generated nanoalloy bridging, Applied Catalysis B: Environmental. . 263 (2020) 118297. (中科院大类一区,IF: 16.683https://doi.org/10.1016/j.apcatb.2019.118297.

[3] Tang C., Zhang H., Xu K., Zhang Q., Liu J., He C., Fan L.*, Asefa T.*, Unconventional molybdenum carbide phases with high electrocatalytic activity for hydrogen evolution reaction, J. Mater. Chem. A, 7 (2019) 18030. (中科院大类一, IF: 11.301http://dx.doi.org/10.1039/C9TA04374H.

[4] Shao K., Li F., Zhang G., Zhang Q., Maliutina K., Fan L.*, Approaching Durable Single-Layer Fuel Cells: Promotion of Electroactivity and Charge Separation via Nanoalloy Redox Exsolution, ACS Appl. Mater. Interfaces, 11 (2019) 27924.(中科院大类一区SCI IF: 8.758https://pubs.acs.org/doi/10.1021/acsami.9b08448.

[5] Fan L. and Su P.-C, Layer-structured LiNi0.8Co0.2O2: A new triple (H+/O2/e) conducting cathode for low temperature proton conducting solid oxide fuel cells. J Power Sources 306 (2016) 369. (中科院大类一区SCI, IF: 6.395) ESI高引论文/热点论文Hot paper https://doi.org/10.1016/j.jpowsour.2015.12.015.

[6] Fan L., Ma Y., Wang X., Singh M., Zhu B. Understanding of electrochemical mechanism of the core-shell Ceria-LiZnO nanocomposite in a low temperature solid oxide fuel cell. J. Mater. Chem. A, 2 (2014) 5399. (中科院大类一区SCI, IF: 6.26) http://dx.doi.org/10.1039/C3TA14098A.

[7] Fan L., Wang C., Chen M., Zhu B. Recent development of ceria-based (nano)composite materials for low temperature ceramic fuel cells and electrolyte-free fuel cells. J. Power Sources 234 (2013) 154. (中科院大类一区SCI, IF: 4.951), ESI高引(1%)和热点(1‰)论文 ESI hot and Highly cited paper https://doi.org/10.1016/j.jpowsour.2013.01.138.

[8] Fan L., Wang C., Zhu B. Low temperature ceramic fuel cells using all nano composite materials. Nano Energy, 1 (2012) 631. (中科院大类一区SCI, IF: 10.02) https://doi.org/10.1016/j.nanoen.2012.04.004.

[9] Zhu B#.*, Huang Y.#, Fan L.#, Ma Y.#, Wang B., Xia C., Afzal M., Zhang B., Dong W., Wang H.* and Lund P. D*. Novel fuel cell with nanocomposite functional layer designed by perovskite solar cell principle. Nano Energy 19 (2016) 156. (SCI一区, IF:10.268) https://doi.org/j.nanoen.2015.11.015.

[10] Li Y. M. Singh, Jing Y., He C., Fan L.* Efficient reversible CO/CO2 conversion in solid oxide cells with a phase-transformed fuel electrode, Science China Materials, 64 (2021) 1114, https://doi.org/10.1007/s40843-020-1531-7.中科院大类一区Top SCI, IF: 6.098 国内材料类旗舰期刊

[11] Zhu, B., Raza, R., Fan, L., Sun, C., Solid Oxide Fuel Cells: From Electrolyte-based to Electrolyte-free Devices, John Wiley & Sons, 2020. Online ISBN: 9783527812790, https://doi.org/10.1002/9783527812790.(第三编辑,完成近5万字撰写)

Journal Publications

After Joining SZU

[81] Zhu B.#*, Fan L.#,*, Mushtaq N.#, Raza R.*, Sajid M.c, Wu Y., Lin W, Kim J-S., Lund P.D., Yun S.* Semiconductor Electrochemistry for Clean Energy Conversion and Storage, Elctrochemical Energy Reviews, 2021, Revision submitted

[80] Yu L., Fan L.*, Electrochemical performance of low temperature solid oxide fuel cells using syngas from pyrolytic urban sludge, Ceramics International, 2021, https://doi.org/10.1016/j.ceramint.2021.02.268.

[79] Maliutina K., He C., Xu K., Yin Y., He C., Fan L.*, Structural and electronic engineering of biomass-derived carbon nanosheets for boosting oxygen reduction reaction, Sustainable Energy & Fuels, 5 (2021) 2114-2126, https://doi.org/10.1039/D0SE01631D.

[78] Hu E.#, Jiang Z. #, Fan L.#*, singh M.#, Wang F., R. Raza*, M. Sajid, J. Wang, J. S. Kim*, and B. Zhu*, Junction and Energy Band on Novel Semiconductor-based Fuel Cells, iScience, 24 (2021)102129, https://doi.org/10.1016/j.isci.2021.102191.

[77] Li Y. M. Singh, Jing Y., He C., Fan L.* Demonstration of reversible CO/CO2 conversion on a phase-transformed fuel electrode in solid oxide cells, Science China Materials, 64 (2021) 1114-1126, https://doi.org/10.1007/s40843-020-1531-7. 中科院大类一区SCI, IF: 6.098.

[76] Li, W., Yin, Y., Xu, K., Li, F., Maliutina, K., Wu, Q., Li, C., Zhu, B., Fan, L.*, Enhancement of oxygen evolution activity of perovskite (La0.8Sr0.2)0.95MnO3-δ electrode by Co phase surface modification, Catal. Today,364 (2021) 148-156, https://doi.org/10.1016/j.cattod.2020.02.015. (中科院大类二区SCI, IF: 5.825)

[75] Li Y., Yu L., Yu Y., Maliutina K., Wu Q., He C., Fan L.* Understanding CO2 electrochemical reduction kinetics of mixed-conducting cathodes by the electrical conductivity relaxation method, Int. J. Hydrogen Energy, 46 (2021) 9646, https://doi.org/10.1016/j.ijhydene.2020.07.141. (中科院大类二区SCI, IF: 4.939)

[74] Jing Y., Zhou X., Lund P., Chen C., Fan L.*, Electrochemical impact of the carbonate in ceria-carbonate composite for low temperature solid oxide fuel cell, Int. J. Hydrogen Energy, 46 (2021) 9898, https://doi.org/10.1016/j.ijhydene.2020.05.065. (中科院大类二区SCI, IF: 4.939)

[73] Li Y., Li Y., Yu L., Hu Q., Wang Q., Maliutina K., Fan L.* Achieving excellent and durable CO2 electrolysis performance on a dual-phase fuel electrode in solid oxide electrolysis cells, Journal of Power sources, 491 (2021) 229599, https://doi.org/10.1016/j.jpowsour.2021.229599. 中科院大类一区SCI, IF: 8.247

[72] Xu K., Bao H., Tang C., Maliutina K., Li F., Fan L.*, Engineering hierarchical MOFs-derived Fe-N-C nanostructure with improved oxygen reduction activity for zinc-air battery: The role of iron oxide, Materials Today Energy, 18 (2020) 100500, https://doi.org/10.1016/j.mtener.2020.100500. (中科院大类二区SCI, IF: 5.604)

[71] Jing Y., Lund P., Asghard M.I., Zhu B., Wang B., Zhou X., Chen C., Fan L.* Non-doped CeO2-carbonate nanocomposite electrolyte for low temperature solid oxide fuel cells, Ceramics International, 46 (2020) 29290-29296, https://doi.org/10.1016/j.ceramint.2020.08.104. (中科院大类二区SCI, IF: 3.830)

[70] Zhou, X., Lin, L., Lv, Y., Zhang, X., Fan, L., Wu, Q., Elucidating effects of component materials and flow fields on Sn–Fe hybrid flow battery performance, J. Power Sources 450 (2020) 227613. https://doi.org/10.1016/j.jpowsour.2019.227613.

[69] Yu, Y., Yu, L., Shao, K., Li, Y., Maliutina, K., Yuan, W., Wu, Q., Fan, L.*, BaZr0.1Co0.4Fe0.4Y0.1O3-SDC composite as quasi-symmetrical electrode for proton conducting solid oxide fuel cells, Ceram. Int. 46 (2020) 11811 https://doi.org/10.1016/j.ceramint.2020.01.215. (中科院大类二区SCI, IF: 3.830)

[68] Cao, Z., Wang, Z., Li, F., Maliutina, K., Wu, Q., He, C., Lv, Z.*, Fan, L.*, Insight into high electrochemical activity of reduced La0.3Sr0.7Fe0.7Ti0.3O3 electrode for high temperature CO2 electrolysis, Electrochim. Acta 332 (2020) 135464. https://doi.org/10.1016/j.electacta.2019.135464. (中科院大类二区SCI, IF: 6.215)

[67] Li F., Yin Y., Zhang C., Li W., Maliutina K., Zhang Q., Wu Q., He C., Zhang Y., Yang M.*, Fan L.*, Enhancing oxygen reduction performance activity of oxide-CNT through in-situ generated nanoalloy bridging, Applied Catalysis B: Environmental. 263 (2020) 118297. https://doi.org/10.1016/j.apcatb.2019.118297. (中科院大类一区SCI,IF: 16.683)

[66] Tang C., Zhang H., Xu K., Zhang Q., Liu J., He C., Fan L.*, Asefa T.*, Unconventional molybdenum carbide phases with high electrocatalytic activity for hydrogen evolution reaction, J. Mater. Chem. A, 7 (2019) 18030 . https://doi.org/10.1039/c9ta04374h. (中科院大类一区SCI, IF: 11.301)

[65] Shao K., Li F., Zhang G., Zhang Q., Maliutina K., Fan L.*, Approaching Durable Single-Layer Fuel Cells: Promotion of Electroactivity and Charge Separation via Nanoalloy Redox Exsolution, ACS Appl. Mater. Interfaces, 11 (2019) 27924. https://doi.org/10.1021/acsami.9b08448. (中科院大类一区SCI,IF: 8.758)

[64] Z. Cao, L. Fan*, C. He, G. Zhang, K. Shao, Z. Lv, B. Zhu*. Titanium-substituted ferrite perovskite: An excellent sulfur and coking tolerant anode catalyst for SOFCs. Catalysis Today, 330 (2019) 217. https://doi.org/10.1016/j.cattod.2018.04.023. (中科院大类二区SCI, IF: 5.825)

[63] Hu Q., Li G., Liu X., Zhu B., Li G., Fan L., Chai X., Zhang Q., Liu J., He C., Coupling pentlandite nanoparticles and dual-doped carbon networks to yield efficient and stable electrocatalysts for acid water oxidation, J. Mater. Chem. A, 7 (2019) 461. https://doi.org/10.1039/c8ta09534e. (中科院大类一区SCI, IF: 11.301)

[62] Liu, X., Hu, Q., Zhu, B., Li, G., Fan, L., Chai, X., Zhang, Q., Liu, J., He, C., Boosting Electrochemical Hydrogen Evolution of Porous Metal Phosphides Nanosheets by Coating Defective TiO2 Overlayers, Small 14 (2018) e1802755. https://doi.org/10.1002/smll.201802755.

[61] Zhu, B., Hu, Q., Liu, X., Li, G., Fan, L., Zhang, Q., Liu, J., He, C., Boosting the electrochemical water oxidation reaction of hierarchical nanoarrays through NiFe-oxides/Ag heterointerfaces, Chem. Commun. 54 (2018) 10187. https://doi.org/10.1039/C8CC06270F.

[60] Yang H., Wu Y., Lin Q., Fan L., Chai X., Zhang Q., Liu J., He C., Lin Z. Composition Tailoring via N & S Co-doping and Structure Tuning by Constructing Hierarchical Pores Enable Metal-free Catalysts for High-Performance Electrochemical Reduction of CO2, Angewandte Chemie, 130 (2018) 15702, 中科院大类一区 https://doi.org/10.1002/ange.201809255.

[59] Yang H., Zhang H., Wu Y., Fan L., Chai X., Zhang Q., Liu J., He C. Core-shell structured silver nanowires/nitrogen-doped carbon catalyst for enhanced and multifunctional electro-fixation of CO2. ChemSusChem 11 (2018) 3905, https://doi.org/10.1002/cssc.201801612.

[58] Fan L.#*, Zhu B.*, Su P.-C.*, He C*. Nanomaterials and technologies for low temperature solid oxide fuel cells: Recent advances, challenges and opportunities. Nano Energy 45 (2018) 148, 中科院大类一区SCIIF: 12.34, https://doi.org/10.1016/j.nanoen.2017.12.044.

[57] G. Zhang, W. Li, W. Huang, Z. Cao, K. Shao, F. Li, C. Tang, C. He*, L. Fan*. Strongly coupled Sm0.2Ce0.8O2-Na2CO3 nanocomposite for low temperature solid oxide fuel cells: One-step synthesis and super interfacial proton conductivity. J. Power Sources, 386 (2018) 56, https://doi.org/10.1016/j.jpowsour.2018.03.035.

[56] Y. Liu, H.-P. Zhang, B. Zhu, H. Zhang, L. Fan, X. Chai, Q. Zhang, J. Liu, C. He*. C/N-co-doped Pd coated Ag nanowires as a high-performance electrocatalyst for hydrogen evolution reaction. Electrochim Acta 283 (2018) 221 https://doi.org/10.1016/j.electacta.2018.06.137.

[55] Q. Hu, X. Liu, B. Zhu, G. Li, L. Fan, X. Chai, Q. Zhang, J. Liu, C. He*. Redox route to ultrathin metal sulfides nanosheet arrays-anchored MnO2 nanoparticles as self-supported electrocatalysts for efficient water splitting. J Power Sources 398 (2018) 159 https://doi.org/10.1016/j.jpowsour.2018.07.068.

[54] Q. Hu, X. Liu, B. Zhu, L. Fan, X. Chai, Q. Zhang, J. Liu, C. He*, Z. Lin*. Crafting MoC2-doped bimetallic alloy nanoparticles encapsulated within N-doped graphene as roust bifunctional electrocatalysts for overall water splitting. Nano Energy 50 (2018) 212 https://doi.org/10.1016/j.nanoen.2018.05.033.

[53] H. Yang, Q. Lin, H. Zhang, Y. Wu, L. Fan, X Chai, Q. Zhang, J. Liu, C. He* Selective electrochemical reduction of CO2 by a binder-free platinum/nitrogen-doped carbon nanofiber/copper foil catalyst with remarkable efficiency and reusability. Electrochem Commun 93 (2018) 138 https://doi.org/10.1016/j.elecom.2018.06.018.

[52] C. Tang, Q. Hu, F. Li, C. He*, X. Chai, C. Zhu, J. Liu, Q. Zhang, B. Zhu, L. Fan*. Coupled molybdenum carbide and nitride on carbon nanosheets: An efficient and durable hydrogen evolution electrocatalyst in both acid and alkaline Media. Electrochimica Acta, 2018, 280 (2018) 323, https://doi.org/10.1016/j.electacta.2018.05.129.

[51] T-H Lee, L. Fan, Yu C., F-E Wiria, P-C. Su*. High-Performance SDC-Infiltrated Nanoporous Silver Cathode with Superior Thermal Stability for Low Temperature Solid Oxide Fuel Cells. J. Mater. Chem. A, 6 (2018) 7357, https://doi.org/10.1039/c8ta01104d.

[50] C. Tang, H. Zhang, K. Xu, Q. Hu, F. Li, C. He*, Q. Zhang, J. Liu, L. Fan*. Scalable synthesis of heterostructure molybdenum and nickel sulfides nanosheets for efficient hydrogen generation in alkaline electrolyte. Catalysis Today, 316 (2018) 171. https://doi.org/10.1016/j.cattod.2018.03.010.

[49] F. Li, Y. Yin, W. Li, C. He*, J. Liu, L. Fan*. Readily fabricated NiCo alloy-metal oxide-carbon black hybrid catalysts for the oxygen reduction reactions in the alkaline media. Int. J. Hydrogen Energy, 43 (2018) 12637. https://doi.org/10.1016/j.ijhydene.2018.04.096.

[48] Hu Q., Liu X., Tang C., Fan L., Chai X., Zhang Q., Liu J., He C*. High efficiency oxygen evolution reaction enabled by 3D network composed of nitrogen-doped graphitic carbon-coated metal/metal oxide heterojunctions. Electrochim Acta 265 (2018) 620 https://doi.org/10.1016/j.electacta.2018.01.209.

[47] Yang H., Lin Q., Zhang H., Li G, Fan L, Chai X, Zhang Q, Liu J., He C*. Platinum/nitrogen-doped carbon/carbon cloth: a bifunctional catalyst for the electrochemical reduction and carboxylation of CO2 with excellent efficiency. Chem Commun, 54 (2018) 4108, https://doi.org/10.1039/c8cc00969d.

[46] Hu Q., Liu X., Tang C., Fan L., Chai X., Zhang Q., Liu J., He C. Facile fabrication of 3D network composed of N-doped carbon-coated core-shell metal oxides/phosphides for highly efficient water splitting. Sustainable Energy & Fuels, 2 (2018) 1085, https://doi.org/10.1039/c7se00576h.

[45] T-H Lee, J-D Baek, L. Fan, F-E Wiria, P-C. Su*, S-H Lee*. SDC-Infiltrated Microporous Silver Membrane with Superior Resistance to Thermal Agglomeration for Cathode-Supported Solid Oxide Fuel Cells. Energies, 11 (2018) 2181, IF: 2.676, https://doi.org/10.3390/en11092181.

[44] Liu Y.#, Fan L.#, Cai Y., Zhang W., Wang B., Zhu B. Superionic Conductivity of Sm3+, Pr3+, and Nd3+ Triple-Doped Ceria through Bulk and Surface Two-Step Doping Approach. ACS Appl. Mater. Interfaces 9 (2017) 23614. https://doi.org/10.1021/acsami.7b02224.

[43] Lund P., Zhu B., Li Y., Yun S., Nasibulin A., Raza R., Leskelä M., Ni M., Wu Y., Chen G., Fan L., Kim J., Basu S., Kallio T., Pamuk I. Standardized Procedures Important for Improving Single-Component Ceramic Fuel Cell Technology. ACS Energy Letters 2 (2017) 2752 https://doi.org/10.1021/acsenergylett.7b00997.

[42] Fan L., Chen M., Zhang H., Wang C., He C. Pr2NiO4-Ag composite as cathode for low temperature solid oxide fuel cells: Effects of silver loading methods and amounts. Int J Hydrogen Energy 42 (2017) 17544. https://doi.org/10.1016/j.ijhydene.2017.05.053.

[41] Mi Y., Zhang W., Deng H., Wang X., Fan L.*, Zhu B*. Rare-earth oxide-Li0.3Ni0.9Cu0.07Sr0.03O2-δ composites for advanced fuel cells. Int J Hydrogen Energy, 42 (2017) 22214. https://doi.org/10.1016/j.ijhydene.2017.03.025.

[40] Xie H., Biswas M., Fan L., Li Y., Su P.-C*. Rapid thermal processing of chemical-solution-deposited yttrium-doped barium zirconate thin films. Surface and Coatings Technology 320 (2017)213. https://doi.org/10.1016/j.surfcoat.2017.01.045.

[39] Fan L., He C., Zhu B. Role of carbonate phase in ceria–carbonate composite for low temperature solid oxide fuel cells: A review. Int J Energy Res 41 (2017) 465, https://doi.org/10.1002/er.3629.

[38] Wang B., Wang Y., Fan L., Cai Y., Xia C., Liu Y., et al. Preparation and characterization of Sm and Ca co-doped ceria–La0.6Sr0.4Co0.2Fe0.8O3−δ semiconductor–ionic composites for electrolyte-layer-free fuel cells. J. Mater. Chem. A, 4 (2016) 15426, https://doi.org/10.1039/c6ta05763b.

[37] Fan L. and Su P. Layer-structured LiNi0.8Co0.2O2: A new triple (H+/O2/e) conducting cathode for low temperature proton conducting solid oxide fuel cells. J Power Sources 306 (2016) 369. (SCI一区, IF: 6.217, ) ESI高引论文 https://doi.org/10.1016/j.jpowsour.2015.12.015.

[36] He C.*, Xie M., Hong F., Chai X., Mi H., Zhou X., Fan L.*, Zhang Q., Ngai T., Liu J.  Highly Sensitive Glucose Biosensor Based on Gold Nanoparticles/Bovine Serum Albumin/Fe3O4 Biocomposite Nanoparticles. Electrochim Acta 222 (2016) 1709, https://doi.org/10.1016/j.electacta.2016.11.162.

[35] Zhu B., Fan L.*, Deng H., He Y., Afzal M., Dong W., Yaqub A. and Janjua N. LiNiFe-based layered structure oxide and composite for advanced single layer fuel cells. J Power Sources 316 (2016) 37 (SCI一区, IF: 6.217, ) http://dx.doi.org/10.1016/j.jpowsour.2016.03.056.

[34] Zhu B#., Huang Y. #, Fan L. #, Ma Y. #, Wang B., Xia C., Afzal M., Zhang B., Dong W., Wang H. and Lund P. D. Novel fuel cell with nanocomposite functional layer designed by perovskite solar cell principle. Nano Energy 19 (2016) 156. (SCI一区, IF:10.268, link) https://doi.org/j.nanoen.2015.11.015.

[33] He Y., Fan L., Afzal M., Singh M., Zhang W., Zhao Y., Li J., Zhu B. Cobalt oxides coated commercial Ba0.5Sr0.5Co0.8Fe0.2O3-δ as high performance cathode for low-temperature SOFCs. Electrochim. Acta 191 (2016) 223. (SCI一区, IF:4.504) https://doi.org/10.1016/j.electacta.2016.01.090.

[32] Fan L., Xie H., Su P. Spray Coating of Dense Proton-conducting BaCe0.7Zr0.1Y0.2O3 Electrolyte for Low Temperature Solid Oxide Fuel Cells. Int J Hydrogen Energy, 41 (2016) 6516. (SCI二区, IF:3.268) http://dx.doi.org/10.1016/j.ijhydene.2016.03.001.

[31] Yu C.-C., Baek J. D., Su C.-H., Fan L., Wei J., Liao Y.-C., Su P. Inkjet-printed Porous Silver Thin Film as a Cathode for Low-Temperature Solid Oxide Fuel Cell. ACS Appl Mater Interfaces 8 (2016) 10343. (SCI) https://doi.org/10.1021/acsami.6b01943.

[30] Zhu B., Lund P. D., Raza R., Ma Y., Fan L., Afzal M., Patakangas J., He Y., Zhao Y., Tan W., Huang Q.-A., Zhang J., Wang H. Schottky Junction Effect on High Performance Fuel Cells Based on Nanocomposite Materials. Adv. Energy Mater., 5 (2015) 1401895. (SCI一区, IF:14.385) https://doi.org/10.1002/aenm.201401895.

Book chapter

1. Zhu, B., Raza, R., Fan, L., Sun, C., Solid Oxide Fuel Cells: From Electrolyte-based to Electrolyte-free Devices, John Wiley & Sons, 2020. Online ISBN: 9783527812790, Print ISBN: 9783527344116, https://doi.org/10.1002/9783527812790

2. Fan, L.*, Chapter 2: Solid-State Electrolytes for SOFC, in: B. Zhu, R. Raza, L. Fan, C. Sun (Eds.) Solid Oxide Fuel Cells: From Electrolyte-Based to Electrolyte-Free Devices, John Wiley & Sons, 2020, pp. 35. https://doi.org/10.1002/9783527812790.ch2

3. Zhu, B.*, Fan, L.*, Kim, J.-S., Lund, P.D., Chapter 6: Electrolyte-Free SOFCs: Materials, Technologies, and Working Principles, in: B. Zhu, R. Raza, L. Fan, C. Sun (Eds.) Solid Oxide Fuel Cells: From Electrolyte-Based to Electrolyte-Free Devices, John Wiley & Sons, 2020. https://doi.org/10.1002/9783527812790.ch6

4. Wang, B., Fan, L.*, Liu, Y., Zhu, B.*, Chapter 7: Ceria Fluorite Electrolytes from Ionic to Mixed Electronic and Ionic Membranes, in: B. Zhu, R. Raza, L. Fan, C. Sun (Eds.) Solid Oxide Fuel Cells: From Electrolyte-Based to Electrolyte-Free Devices, John Wiley & Sons, 2020, pp. 213. https://doi.org/10.1002/9783527812790.ch7

5. Wu, Y.#, Fan, L.#, Mushtaq, N., Zhu, B., Afzal, M., Sajid, M., Raza, R., Kim, J.-S., Lin, W.-F., Lund, P.D., Chapter 11: Electrolyte-Free Fuel Cell: Principles and Crosslink Research, in: B. Zhu, R. Raza, L. Fan, C. Sun (Eds.) Solid Oxide Fuel Cells: From Electrolyte-Based to Electrolyte-Free Devices, John Wiley & Sons, 2020. https://doi.org/10.1002/9783527812790.ch11

6. Fan L., Afzal M. He C., Zhu B., Chapter 12 : “Nanocomposites for ‘‘Nano Green Energy’’ applications” in “Bioenergy systems for the future”, Edited by: F. Dalena, A. Basile and C. Rossi, Elsevier, 2017, 421-429, ISBN: 978-0-08-101031-0, DOI: https://doi.org/10.1016/B978-0-08-101031-0.00012-0.

Patents/专利

[1] 范梁栋,胡启铖,包华源,电极材料的制备方法、电极和超级电容器,中国发明专利,深圳大学,申请号:202011091451.2

[2] 范梁栋,张卉,复合材料及其制备方法、电催化水解制氢的方法,中国发明专利,深圳大学,申请号:202010595727.4

[3] 范梁栋,徐括峰,一种含锌单原子催化剂及其制备方法与应用,中国发明专利,深圳大学,申请号:202010475821 .6,公布号:CN111584889A 已授权

[4] 范梁栋,张卉,唐超云,碳化钼、碳化钼@硫化钼复合材料及制备方法与应用,中国发明专利,深圳大学,申请号:20180785412.9,公布号:CN109019602A

[5] 范梁栋,陶瓷燃料电池及其制备方法,中国发明专利,深圳大学,授权专利号:ZL 201711078240.3

会议

1. Fan L. Su P, Oral presentation: Spray Coating of Dense Proton-conducting BZCY Electrolyte Thin Film for LTSOFCs, The 8th International Conference on Technological Advances of Thin Films & Surface Coatings (ThinFilms 2016), 12-15th, July, 2016, Singapore (Session Chair).

2. Fan L., Post Presentation, Electro-catalytic activity of lithiated transition metal oxide catalysts for low temperature solid oxide fuel cells, 2nd International Symposium on Catalytic Science and Technology in Sustainable Energy Environment, Oct 11-14, 2016, Tianjin, China.

3. Fan L. Zhang G. Oral presentation: Sm0.2Ce0.8O2-Na2CO3 nanocomposite: one step synthesis and electrochemical performances for low temperature ceramic fuel cells, NANOENERGY 2017 (4th International Conference on Nanotechnology, Nanomaterials & Thin Films for Energy Applications), 26-28 July 2017, Aalto University, Helsinki, Finland.

4. Fan L.*, G. Zhang, Z. Cao, K. Shao, Oral Presentation: Recycling of symmetrical solid oxide fuel cell for single component fuel cell application, China-EU Fuel cell and hydrogen forum, Dec. 11-13rd, 2017, Wuhan

5. G. Zhang, Z. Cao, K. Shao, L. Fan*, Post Presentation: Strongly coupled SDC-Na2CO3 nanocomposite: One step synthesis and super proton conductivity. China-EU Fuel cell and hydrogen forum, Dec. 11-13rd, 2017, Wuhan

6. Z. Cao, K. Shao, G. Zhang, L. Fan*, Post Presentation: Faraday efficiency study of the Fe based perovskite oxide for CO2 electrolysis, China-EU Fuel cell and hydrogen forum, Dec. 11-13rd, 2017, Wuhan.

7. Fan L., Zhang G., High ionic conducting composite membrane for low temperature solid oxide fuel cells, The 9th International Conference on Technological Advances of Thin Films & Surface Coatings (Thim film 2018), 17 – 20 July 2018, Shenzhen, China, Oral presentation

8. 李凤姣、印钰、范梁栋,邀请报告:与贵金属催化活性媲美的钙钛矿氧化物-金属-碳纳米管双功能氧电催化剂的理性设计、合成与表征,中国新能源材料与器件第二届学术会议, 2018.10.19-21,湖南长沙

9. Fan L. Design of active and durable oxide-metal-NCNT oxygen electrocatalysts for Zinc-Air battery, 2019 International Conference on Electrochemical Energy System (2019 ICEES,电化学系统大会)2019326-29日,中国绍兴,口头报告

10. 范梁栋, 张广洪,低温固态氧化物燃料电池纳米复合电解:一步合成与界面超质子电导性能研究,Solid state ionics 2018August 5-9st, 2018, 上海同济大学

11. Fan L.,邀请报告: Functional materials for non-classic ceramic fuel cells, International Conference on Solid state ionics (SSI-22), Jun. 15-22nd, 2019, Pyengchang,韩国

12. Fan L, Shao K., 大会邀请报告Boosting performance and durability of single-layer fuel cell with nanoalloy exsolved perovskite oxide semiconductors, Nanosmat Asia 2019, Oct. 11-13rd2019,中国西安,获最佳口头报告

13. 范梁栋,钼基析氢催化剂的设计合成和电化学性能研究, 第二十次全国电化学大会,20191025-28日,中国长沙,口头报告

14. 范梁栋邀请报告Boosting performance and durability of single-layer fuel cell with nanoalloy exsolved perovskite oxide semiconductors2019宁波新能源技术国际研讨会International Symposium on New Energy Technology2019111-3,中国宁波

15. 范梁栋,景义甫,俞莉翔,分会邀请报告:氧化铈-碳酸盐复合物:多离子导电特性与功能应用,2020全国固态离子学会议(SSIC2020暨新型能量储存与转换材料及技术国际论坛,20200925-29日,中国贵阳,分会场主持人

16. 范梁栋,大会邀请报告:钙钛矿表面纳米金属偏析有效提升电化学能量转换 Effective electrochemical energy conversion using perovskite oxides with nano metal exsolution,第六届长三角国际新能源会议,The 6thYangzi River Delta International Conference on New Energy2020.12.05-07,中国南京,获“青年科学家创新奖”








联系我们

地址:深圳市南山区学苑大道1066号深圳大学丽湖校区B1楼414

深圳大学化学与环境工程学院  邮编:518071 电话:0755-26536141



关于我们

深圳大学化学与环境工程学院是理工类综合学院,成立于2006年8月,其历史可追溯至1985年建立的深圳大学应用化学系和1995年建立的深圳大学师范学院化学与生物学系,现设有化学系、环境工程系、食品科学与工程系以及新能源科学与工程系  点击查看更多>>

快速通道

微信公众号